(Publisher of Peer Reviewed Open Access Journals)

International Journal of Advanced Technology and Engineering Exploration (IJATEE)

ISSN (Print):2394-5443    ISSN (Online):2394-7454
Volume-8 Issue-79 June-2021
Full-Text PDF
Paper Title : Performance investigation of patch and bow-tie antennas for ground penetrating radar applications
Author Name : Nairit Barkataki, Banty Tiru and Utpal Sarma
Abstract :

Ground Penetrating Radar (GPR) uses electromagnetic waves to detect objects beneath the earth’s surface. Even though signal processing plays a significant role in GPR performance, the quality of the acquired data is also dependant on the antenna and the associated electronic circuitry. Bow-tie antennas are a popular choice in GPR systems because of their lightweight design, planar structure and ultra-wideband characteristics. Recent advances in planar microstrip antenna design have thrown up lots of possibilities for this antenna type in GPR applications. In this paper, a comparative analysis of a planar microstrip antenna and a bow-tie slot antenna is presented. Both the antennas are designed for a centre frequency of 1.5 GHz, and are fabricated on Flame Retardant 4 (FR4) substrate. The planar microstrip antenna is fed by a microstrip line, whereas the co-planar waveguide feeding is used for the bow-tie antenna. The bow-tie antenna exhibits a measured bandwidth of ∼65%, with minimum return loss of -33.60 dB at 1.46 GHz. On the other hand, the microstrip antenna exhibits a return loss of -30.53 dB at its centre frequency of 1.51 GHz.

Keywords : Patch, Bow-tie, Slot, Antenna, Ground penetrating radar.
Cite this article : Barkataki N, Tiru B, Sarma U. Performance investigation of patch and bow-tie antennas for ground penetrating radar applications. International Journal of Advanced Technology and Engineering Exploration. 2021; 8(79):753-765. DOI:10.19101/IJATEE.2021.874072.
References :
[1]Chang CW, Lin CH, Yuan QW. Quantitative study of electromagnetic wave characteristic values for mortar’s crack. Construction and Building Materials. 2018; 175:351-9.
[Crossref] [Google Scholar]
[2]Zajícová K, Chuman T. Application of ground penetrating radar methods in soil studies: a review. Geoderma. 2019; 343:116-29.
[Crossref] [Google Scholar]
[3]Benedetto A, Benedetto F, Tosti F. GPR applications for geotechnical stability of transportation infrastructures. Nondestructive Testing and Evaluation. 2012; 27(3):253-62.
[Crossref] [Google Scholar]
[4]Diallo MC, Cheng LZ, Rosa E, Gunther C, Chouteau M. Integrated GPR and ERT data interpretation for bedrock identification at Cléricy, Québec, Canada. Engineering Geology. 2019; 248:230-41.
[Crossref] [Google Scholar]
[5]Alsharahi G, Faize A, Louzazni M, Mostapha AM, Bayjja M, Driouach A. Detection of cavities and fragile areas by numerical methods and GPR application. Journal of Applied Geophysics. 2019; 164:225-36.
[Crossref] [Google Scholar]
[6]Borden KA, Isaac ME, Thevathasan NV, Gordon AM, Thomas SC. Estimating coarse root biomass with ground penetrating radar in a tree-based intercropping system. Agroforestry Systems. 2014; 88:657-69.
[Crossref] [Google Scholar]
[7]Jol HM. Ground penetrating radar theory and applications. Elsevier; 2008.
[Google Scholar]
[8]Daniels DJ. Ground penetrating radar. Encyclopedia of RF and Microwave Engineering. 2005. John Wiley & Sons
[Crossref] [Google Scholar]
[9]Ávila-Navarro E, Carrasco JA, Reig C. Printed dipole antennas for personal communication systems. IETE Technical Review. 2010; 27(4):286-92.
[Google Scholar]
[10]Turk AS, Sahinkaya DA, Sezgin M, Nazli H. Investigation of convenient antenna designs for ultra-wide band GPR systems. In international workshop on, advanced ground penetrating radar 2007 (pp. 192-6). IEEE.
[Crossref] [Google Scholar]
[11]Hertl I, Strycek M. UWB antennas for ground penetrating radar application. In 19th international conference on applied electromagnetics and communications 2007 (pp. 1-4). IEEE.
[Crossref] [Google Scholar]
[12]Cheng H, Yang H, Li Y, Chen Y. A compact vivaldi antenna with artificial material lens and sidelobe suppressor for GPR applications. IEEE Access. 2020; 8:64056-63.
[Crossref] [Google Scholar]
[13]Jamali AA, Marklein R. Design and optimization of ultra-wideband TEM horn antennas for GPR applications. In URSI general assembly and scientific symposium 2011 (pp. 1-4). IEEE.
[Crossref] [Google Scholar]
[14]Mohamed HA, Elsadek H, Abdallah EA. Quad ridged UWB TEM horn antenna for GPR applications. In radar conference 2014 (pp. 79-82). IEEE.
[Crossref] [Google Scholar]
[15]Wang J, Su Y, Huang C, Lu M, Li Y. Design of bow-tie antenna with high radiating efficiency for impulse GPR. In international geoscience and remote sensing symposium 2012 (pp. 594-7). IEEE.
[Crossref] [Google Scholar]
[16]Ajith KK, Bhattacharya A. Improved ultra-wide bandwidth bow-tie antenna with metamaterial lens for GPR applications. In proceedings of the international conference on ground penetrating radar 2014 (pp. 739-44). IEEE.
[Crossref] [Google Scholar]
[17]Nayak R, Maiti S, Patra SK. Design and simulation of compact UWB Bow-tie antenna with reduced end-fire reflections for GPR applications. In international conference on wireless communications, signal processing and networking 2016 (pp. 1786-90). IEEE.
[Crossref] [Google Scholar]
[18]Lu W, Li Y, Ji Y, Shen S, Tang C, Zhou B, et al. High reliability UWB monopole antenna using planar embedded resistance for mars subsurface exploration. Electronics. 2021; 10(6):1-13.
[Crossref] [Google Scholar]
[19]Alam AZ, Islam MR, Khan S. Design and analysis of UWB rectangular patch antenna. In asia-pacific conference on applied electromagnetics 2007 (pp. 1-3). IEEE.
[Crossref] [Google Scholar]
[20]Karim MN, Malek MF, Jamlos MF, Saudin N. Ground penetrating radar: antenna for buried object detection. In symposium on wireless technology & applications 2013 (pp. 198-201). IEEE.
[Crossref] [Google Scholar]
[21]Jung J, Choi W, Choi J. A small wideband microstrip-fed monopole antenna. IEEE Microwave and Wireless Components Letters. 2005; 15(10):703-5.
[Crossref] [Google Scholar]
[22]Wong KL, Wu CH, Su SW. Ultrawide-band square planar metal-plate monopole antenna with a trident-shaped feeding strip. IEEE Transactions on Antennas and Propagation. 2005; 53(4):1262-9.
[Crossref] [Google Scholar]
[23]Yang T, Davis WA. Planar half-disk antenna structures for ultra-wideband communications. In antennas and propagation society symposium 2004 (pp. 2508-11). IEEE.
[Crossref] [Google Scholar]
[24]Lee SH, Park JK, Lee JN. A novel CPW‐fed ultra‐wideband antenna design. Microwave and Optical Technology Letters. 2005; 44(5):393-6.
[Crossref] [Google Scholar]
[25]Chen ZN, Chia MY, Ammann MJ. Optimization and comparison of broadband monopoles. IEE Proceedings-Microwaves, Antennas and Propagation. 2003; 150(6):429-35.
[Google Scholar]
[26]Su SW, Wong KL, Tang CL. Ultra‐wideband square planar monopole antenna for IEEE 802.16 a operation in the 2–11‐GHz band. Microwave and Optical Technology Letters. 2004; 42(6):463-6.
[Crossref] [Google Scholar]
[27]Alsath MG, Kanagasabai M. Compact UWB monopole antenna for automotive communications. IEEE Transactions on Antennas and Propagation. 2015; 63(9):4204-8.
[Crossref] [Google Scholar]
[28]Jain P, Singh B, Yadav S, Verma A. A semicircular monopole antenna for ultra-wideband applications. In proceedings of international conference on ICT for sustainable development 2016 (pp. 339-45). Springer, Singapore.
[Crossref] [Google Scholar]
[29]Keshwala U, Rawat S, Ray K. Compact half-hexagonal monopole planar antenna for UWB applications. In soft computing: theories and applications 2018 (pp. 225-31). Springer, Singapore.
[Crossref] [Google Scholar]
[30]Ling CW, Chung SJ. A simple printed ultrawideband antenna with a quasi-transmission line section. IEEE Transactions on Antennas and Propagation. 2009; 57(10):3333-6.
[Crossref] [Google Scholar]
[31]Thomas KG, Sreenivasan M. A simple ultrawideband planar rectangular printed antenna with band dispensation. IEEE Transactions on Antennas and Propagation. 2009; 58(1):27-34.
[Crossref] [Google Scholar]
[32]Richardson M, Bauder CJ, Kazemi R, Fathy AE. Design of a rigid UWB log spiral antenna for GPR applications in harsh environment. In radio and wireless symposium (RWS) 2020 (pp. 262-4). IEEE.
[Crossref] [Google Scholar]
[33]Bousbaa W, Medkour H, Bouttout F, Messali Z. Fully planar frequency independent square archimedean spiral antenna with impedance transformer for ground penetrating radars. Microwave and Optical Technology Letters. 2021; 63(1):295-309.
[Crossref] [Google Scholar]
[34]Guo J, Tong J, Zhao Q, Jiao J, Huo J, Ma C. An ultrawide band antipodal Vivaldi antenna for airborne GPR application. IEEE Geoscience and Remote Sensing Letters. 2019; 16(10):1560-4.
[Crossref] [Google Scholar]
[35]Srivastav A, Nguyen P, McConnell M, Loparo KA, Mandal S. A highly digital multiantenna ground-penetrating radar (GPR) system. IEEE Transactions on Instrumentation and Measurement. 2020; 69(10):7422-36.
[Crossref] [Google Scholar]
[36]Raza A, Lin W, Chen Y, Yanting Z, Chattha HT, Sharif AB. Wideband tapered slot antenna for applications in ground penetrating radar. Microwave and Optical Technology Letters. 2020; 62(7):2562-8.
[Crossref] [Google Scholar]
[37]Kundu S, Chatterjee A, Iqbal A. Printed circular ultra-wideband antenna with triple sharp frequency notches for surface penetrating radar application. Sādhanā. 2020; 45:1-7.
[Crossref] [Google Scholar]
[38]Rahim MK, Aziz MA, Goh CS. Bow-tie microstrip antenna design. In IEEE international conference on networks jointly held with the IEEE Malaysia international conf on communic 2005. IEEE.
[Google Scholar]
[39]Chen G, Liu RC. A 900MHz shielded bow-tie antenna system for ground penetrating radar. In proceedings of the international conference on ground penetrating radar 2010 (pp. 1-6). IEEE.
[Crossref] [Google Scholar]
[40]Takizawa H, Matsubayashi K, Michishita N, Morishita H, Kawabata K. Study on impedance matching and miniaturization of bow-tie antenna with folded structure and slit for ground penetrating radar. In international workshop on antenna technology 2020 (pp. 1-2). IEEE.
[Crossref] [Google Scholar]
[41]Liu S, Li M, Li H, Yang L, Shi X. Cavity-backed bow-tie antenna with dielectric loading for ground-penetrating radar application. IET Microwaves, Antennas & Propagation. 2019; 14(2):153-7.
[Crossref] [Google Scholar]
[42]Li Y, Chen J. Improved high gain miniaturized bow-tie antenna with AMC. In MTT-S international conference on numerical electromagnetic and multiphysics modeling and optimization (NEMO) 2020 (pp. 1-4). IEEE.
[Crossref] [Google Scholar]
[43]Chen S, Jia W, Lin J, Zhang Y. Research and design of tripod-shaped UWB antenna for GPR. In IOP conference series: earth and environmental science 2021 (pp. 1-7). IOP Publishing.
[Google Scholar]
[44]Nayak R, Maiti S. A review of Bow-Tie antennas for GPR applications. IETE Technical Review. 2018.
[Crossref] [Google Scholar]
[45]Garg R, Bhartia P, Bahl IJ, Ittipiboon A. Microstrip antenna design handbook. Artech house; 2001.
[Google Scholar]
[46]Shakib MN, Moghavvemi M, Mahadi WN. Design of a compact planar antenna for ultra-wideband operation. Applied Computational Electromagnetics Society Journal. 2015; 30(2):222-9.
[Google Scholar]
[47]Visser HJ. Antenna theory and applications. John Wiley & Sons; 2012.
[Google Scholar]
[48]Karim MN, Malek MF, Jamlos MF, Abdullah AZ, Noorpi NM, Mokhtar NM, et al. CPW circular patch antenna for ground penetrating radar applications. In theory and applications of applied electromagnetics 2015 (pp. 59-67). Springer, Cham.
[Crossref] [Google Scholar]
[49]Varkiani SM, Afsahi M. Compact and ultra-wideband CPW-fed square slot antenna for wearable applications. AEU-International Journal of Electronics and Communications. 2019; 106:108-15.
[Crossref] [Google Scholar]
[50]Elsheakh DM, Abdallah EA. Novel shapes of vivaldi antenna for ground pentrating radar (GPR). In European conference on antennas and propagation (EuCAP) 2013 (pp. 2886-9). IEEE.
[Google Scholar]
[51]Ghione G, Naldi C. Analytical formulas for coplanar lines in hybrid and monolithic MICs. Electronics Letters. 1984; 20(4):179-81.
[Google Scholar]