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1.Introduction 
To increase efficiency, an enhanced hybrid genetic 

algorithm (e-HGA) for task scheduling is created by 

integrating genetic algorithm (GA) with additional 

optimization approaches. Task scheduling is a 

difficult problem, especially in parallel and 

distributed systems. A hybrid method allows the 

strengths of many algorithms to complement one 

another, resulting in superior results [1]. Task 

scheduling in distributed computing environments is 

a critical aspect that directly impacts the overall 

performance and efficiency of the system. Efficient 

task scheduling ensures that computational resources 

are utilized optimally, leading to improved system 

throughput; reduced completion times, and enhanced 

overall system reliability. In this context, an e-HGA 

can be a powerful tool for addressing the 

complexities of task scheduling.  
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This approach combines the strengths of GA with 

other optimization techniques, making it well-suited 

for the complex and dynamic nature of distributed 

computing environments [2]. 

 

In recent times, there has been an unparalleled 

advancement in cloud computing technology, 

coinciding with the proliferation of complex and 

interconnected data that form scientific workflows 

(SWFs). This has significantly underscored the 

importance of SWFs which has become a top priority 

for both service providers, and customers [3]. 

Consequently, efforts have been directed towards 

devising optimal strategies for assigning workflow 

tasks to available computing resources [4]. Cloud 

computing has emerged as a prominent research 

domain, gaining recognition as the primary 

distributed computing model. It offers on-demand, 

scalable, and highly reliable resources, operating on a 

subscription-based service model kin to utility 
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Abstract  
The effectiveness of genetic algorithms (GA) can be improved by adjusting genetic operators and integrating an efficient 

heuristic. These enhancements are integrated into the suggested enhanced hybrid genetic algorithm (e-HGA). The e-HGA 

begins with an initial population that includes a solution derived from a heuristic, which serves as a guiding point toward 

achieving an optimal makespan solution.  The proposed e-HGA was evaluated in this work for two degrees of fitness, 

which qualified a chromosome and a gene to be preferred above their other counterpart in a data population. To preserve 

population variety and avoid premature convergence, parents were randomly picked from the population and crossed over 

(mated) to generate offspring that were then modified by introducing random geneLists. The conventional hybrid genetic 

algorithm (HGA) and e-HGA required 9.95 s and 9.148 s, respectively, for task completion. Increasing the number of 

cloudlets to 40, the conventional HGA and e-HGA took 10.674 s and 9.558 s, respectively. When 50 cloudlets were 

assigned to 10 virtual machines (VMs) the conventional HGA completed the task in 11.01 s, while the e-HGA required 

12.863 s. Subsequently, with 60 cloudlets on 10 VMs, the conventional HGA and e-HGA achieved task completion in 

14.74 s and 14.242 s, respectively. For 70 cloudlets on 10 VMs, the conventional HGA and e-HGA required 15.38 s and 

17.25 s, respectively. The results contributed to research on task scheduling optimization by scheduling task operations to 

reduce cost, enable efficient resource allocation, and manage time. 
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computing. These resources are utilized for executing 

SWFs, which include notable examples like 

Montage, CyberShake, Epigenomics, laser 

interferometer gravitational-wave observatory 

(LIGO), and Stanford Information prediction 

heterogeneous tools (SIPHT). SWFs can be viewed 

as specialized workflows designed for computational 

processes involving intricate data flows and control 

dependencies [5]. They automate the implementation 

of these processes on suitable computing resources. 

The current era is characterized by remarkable 

advancements in cloud computing technology, 

complemented by the increasing complexity of 

SWFs; this has necessitated a strong emphasis on 

efficient workflow scheduling (WS) benefiting both 

providers and customers alike. Cloud computing has 

emerged as a leading model for distributed 

computing, offering flexible and reliable resources 

for executing SWFs which play a pivotal role in 

various domains such as Montage, CyberShake, 

Epigenomics, LIGO, and SIPHT. To ensure the 

successful execution of SWFs, it is crucial to utilize 

available computing resources optimally. This 

involves focusing on identifying the optimal method 

for allocating workflow tasks among these resources, 

a procedure referred to as WS. WS encompasses the 

assignment and oversight of the execution of 

interconnected tasks, all while considering 

constraints on shared resources based on their 

priorities [6]. The combinatorial nature of this 

problem makes it known to be nondeterministic 

polynomial (NP) complete [6], prompting researchers 

to seek near-optimal solutions. In order to facilitate 

the execution of workflows, it is essential to have 

well-defined and effectively managed workflows. 

This is where an efficient workflow management 

system (WMS) comes into play. A WMS is 

responsible for defining and organizing workflows in 

a manner that allows for their subsequent execution. 

By utilizing robust WMS, researchers can ensure that 

workflows are efficiently managed and prepared for 

execution. The basic cloud computing concept is to 

isolate applications, hardware, and the operating 

system. For example, if an operating system failure 

or a virus attack occurs, virtualization technology can 

migrate the application automatically to another 

server instead of shutting down the whole system. 

One physical server can host several virtual servers. 

Furthermore, one cloud user can possess ≥ 1 virtual 

instance for data storage or hosting on cloud servers. 

Job scheduling maps jobs to the available task 

resources in a cloud computing environment. 

Scheduling involves mapping and managing the 

execution of interdependent tasks on allocated 

resources [7]. WS represents a widely studied 

problem in computer science, characterized as a NP 

hard challenge. Researchers have devoted substantial 

effort to enhancing the performance of workflow 

execution [8]. NP-hard problems are those that can be 

transformed into different problems solvable in 

polynomial time on a nondeterministic machine [8]. 

This category encompasses optimization problems 

like the fractional knapsack and the traveling 

salesman. The effectiveness of virtual machines’ 

(VMs) performance relies on factors such as 

processor capabilities, memory capacity, and 

processing architecture. While a VMs equipped with 

high-performing processors and ample memory has 

the potential to deliver superior results, these 

resources must be judiciously managed to avoid 

inefficiencies stemming from suboptimal workflow 

structuring [9]. Consequently, the optimization of 

WS becomes pivotal for allocating tasks within both 

single and multiple VMs in cloud environments. The 

primary objective of researchers has been to optimize 

cloud WS systems in terms of both time and cost. 

Numerous methodologies have been adopted to 

tackle this multifaceted problem. This study centers 

on refining the scheduling of workflows onto VM 

aiming to achieve resource efficiency and 

subsequently reduce infrastructure costs [10]. This 

research is mainly aimed to allocate appropriate 

resources to workflow tasks to enable the completion 

of workflow task execution within the customer’s 

stated deadline. An appropriate scheduling strategy 

can substantially influence cloud computing 

performance [11]. Scheduling aids resource 

organization as specified by the user. Resources must 

be formally allocated prior to scheduling for 

application execution. The processor, memory, and 

workflow processing architecture determine VMs 

performance. Processing time and cost reduction are 

major issues in tasks running on VMs. Makespan (the 

maximum time one VM requires to complete all 

assigned tasks or jobs) is an important cloud 

computing issue. The GA represents a probabilistic 

approach for conducting a comprehensive search 

across possibilities, inspired by the principles of 

natural biological evolution. GAs function by 

manipulating a population of potential solutions 

using the survival of the fittest principle aimed at 

progressively improving the quality of 

approximations to a solution. In each of the iteration 

a fresh collection of approximations is generated by 

picking individuals according to their degree of 

suitability within the problem domain and then 

combining them using operators inspired by 

biological genetics. In this study, the research issue 
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focused on how scheduled tasks can yield minimal 

job completion times using a proposed e-HGA. Grid 

computing and cloud computing resources offer 

optimal solutions that can cater to user requirements, 

providing scalability and flexibility for the 

considered applications [12]. However, there are 

distinct differences in task scheduling between cloud 

computing and grid computing: (1) Resource sharing: 

Cloud computing leverages advanced services by 

utilizing resource sharing through virtualization 

technologies and internet-based concepts [13]. This 

enables real-time allocation, maximizing resource 

utilization and enhancing the elasticity of cloud 

services. Consequently, the scheduler in a cloud 

workflow system must consider the virtualization 

infrastructure, such as virtual services and VM to 

effectively support computational processes. On a 

contrasting note, grid computing relies on the 

collective distribution of an extensive collection of 

resources. Its main emphasis is on batch processing, 

where resources become available as they are freed 

up by other users. (2) Regarding the expense 

associated with resource utilization: Cloud computing 

offers a versatile cost structure that takes into account 

the user's specific requirements, encompassing 

options like pay-as-you-go and on-demand services. 

This approach empowers users to be charged in 

accordance with the resources they utilize, tailored to 

their individual needs. In contrast, grid computing 

follows a quota-based strategy to determine the 

accumulated cost of requested services [14]. Grid 

computing lacks the flexible costing mechanism 

present in cloud computing. In summary, cloud 

computing and grid computing differ in terms of 

resource sharing and cost of resource usage. Cloud 

computing emphasizes resource sharing through 

virtualization to support real-time allocation and 

scalability, while grid computing focuses on shared 

resource clusters and follows a quota-based costing 

strategy. To efficiently schedule and map workflow 

tasks to the available resources within a cloud 

environment, a workflow scheduler (referred to as a 

"bridge" in Figure 1) is required. 

 

 
Figure 1The architecture for executing scientific workflows in a cloud environment 

 

Multi-objective optimization: WS often involves 

multiple conflicting objectives, such as minimizing 

execution time while minimizing costs. GA can 

handle multi-objective optimization problems 

effectively by finding trade-off solutions. Green 

computing: Energy efficiency is a growing concern in 

data centers and cloud computing. An e-HGA can 

help optimize scheduling to reduce energy 

consumption, contributing to environmentally 

sustainable computing practices. Real-world 

applications: WS optimization has applications in 

various domains, including scientific research, 

healthcare, finance, and logistics. Improving 

scheduling algorithms can lead to advancements in 

these fields. In summary, the motivation for 

researching workflow scheduler optimization using 

an e-HGA is driven by the need to address the 

challenges posed by complex, large- scale workflow 

environments and the potential benefits in terms of 

resource utilization, cost savings, scalability, and 

improved quality of service (QoS) across various 

industries and applications. The primary objective of 

researchers has been to optimize cloud WS systems 

in terms of both time and cost. Numerous 

methodologies have been adopted to tackle this 

multifaceted problem. This study centers on refining 

the scheduling of workflows onto VMs, aiming to 

achieve resource efficiency and subsequently reduce 

infrastructure costs. 

 

WS is a NP hard problem that researchers are 

studying to improve workflow execution 

performance. NP-hard problems can be reduced to 

different problems using polynomial time on 

nondeterministic machines, such as optimization 

problems or fractional knapsacks. VM performance is 
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determined by processor, memory, and processing 

architecture. Optimizing WS for task allocation in 

single and multiple VM on the cloud is a major task 

for researchers. This work focuses on scheduling 

workflows to efficiently manage resources and 

provide a less cost infrastructure. This research area 

aims to address the challenges associated with 

efficiently managing and scheduling tasks in 

workflow environments, such as cloud computing, 

data centers, scientific simulations, and 

manufacturing processes. Below are some key 

motivations for this research: Resource utilization: 

Efficiently allocating and utilizing computing 

resources is crucial to maximize the throughput and 

minimize operational costs. An e-HGA can help find 

optimal resource allocations for workflow tasks, 

ensuring that resources are used effectively. Time 

and cost savings: Workflow optimization can lead to 

significant time and cost savings. By automating the 

scheduling process and improving its accuracy, 

organizations can reduce execution times and 

operational expenses. QoS Many applications, 

particularly in cloud computing and real-time 

systems, require adherence to specific QoS 

constraints. Optimizing WS ensures that these 

constraints are met consistently.  

 

The paper is organized as follows: Section 2 provides 

a comprehensive review of the literature related to 

the study of WS, WS objectives, and task scheduling 

algorithms for optimizing workflow schedulers using 

an e-HGA. Section 3 describes the methodology of 

the study, details the proposed hybrid model, and 

presents the experimental study conducted. The 

results obtained from these experiments are analyzed 

and compared with other models in Section 4. 

Section 5 discusses the overall analysis of the results 

and their impact. Finally, Section 6 concludes the 

paper and discusses future research directions. 

 

2.Literature review  
2.1Workflow scheduling 

Effective scheduling is vital for optimum workflow 

execution on all execution platforms. Scheduling 

enhances performance by capitalizing on workflow 

parallelism content. Nevertheless, Amdahl’s law 

states that sequential workflow limits the advantage 

of parallelism. Processing scheduling stands as a 

pivotal subject within cloud computing, focusing on 

the efficient execution of processes while giving due 

consideration to QoS prerequisites like time limits 

and financial constraints. In scholarly works, 

numerous state-of-the-art algorithms for scheduling 

workflows are fundamental or research-oriented, in 

the realm of cloud computing, have been formulated. 

Cloud computing, a technological advancement, 

furnishes expandable services to users by harnessing 

remote centralized computers and the internet [15]. It 

leverages a diverse range of distributed resources to 

deliver various services, each with its own unique 

QoS requirements [12]. Amazon elastic compute 

cloud (EC2), GoGrid, Google App Engine, Microsoft 

Azure, and Aneka are some of the most well-known 

cloud computing systems. Public clouds, private 

clouds, community clouds, hybrid clouds, and cloud 

federations are the most common types of clouds 

[16]. Public clouds are open to any user [17], while 

private clouds are exclusively owned and accessed by 

specific enterprises [16]. Community clouds are 

shared among multiple organizations and can be 

managed either by those entities or by external 

service providers [16]. Hybrid clouds merge 

resources from both public and private cloud sources 

[18]. Moreover, the concept of multi-cloud 

configurations [19, 20]; Has emerged to address 

availability challenges by integrating separate cloud 

environments. Cloud services are delivered through 

software as a service (SaaS), platform as a service 

(PaaS), and infrastructure as a service (IaaS) 

providers [21]. SaaS providers lease corporate SaaS 

of clients [22], PaaS suppliers provide web-based 

access to development components [22], and IaaS 

clouds offer fundamental cloud infrastructure 

resources such as computation power, storage, and 

networking [23]. Virtualization plays a pivotal role in 

facilitating cloud computing by enabling multiple 

VMs to coexist on a single physical computer [24]. 

Each VM simulates an independent computer system 

and executes tasks assigned by users [25]. Through 

VMs instantiation, users can deploy their applications 

on resources with diverse performance and cost 

characteristics. The management of VMs within each 

physical machine or server is overseen by a software 

layer referred to as the hypervisor or VMs monitor, 

which enables the creation and isolated operation of 

VMs. In the realm of cloud computing, WS presents 

a significant challenge, aiming to map workflow 

activities onto VMs while accounting for a variety of 

functional and non-functional constraints [26]. 

Workflows are made up of interdependent activities 

that are linked together by data or functional 

requirements, and these relationships must be taken 

into account when scheduling [27]. However, with 

cloud computing, WS a computationally demanding 

issue known as NP-hard optimization, making it 

difficult to obtain an ideal timetable. The presence of 

several VMs in a cloud, together with the 

requirement to plan different user tasks while taking 
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into account diverse objectives and variables, adds to 

the complexity. The fundamental goal of WS 

strategies is to reduce wait time by appropriately 

distributing jobs to virtual resources [28, 29]. A 

scheduling method, for example, may be designed to 

satisfy service level agreements (SLAs), meet user-

specified dates, and adhere to cost limits [30]. When 

making scheduling decisions, scheduling solutions 

take into account elements such as resource usage, 

load balancing, and the availability of cloud 

resources and services [29]. 

 

2.2Workflow scheduling objectives 

The key WS objective is to accomplish the expected 

aim by allocating the fitting resources to execute 

tasks. Currently, the shared WS objective schemes 

include availability, economic principle, maximum 

resource utilization, minimum makespan, load 

balancing, security, and higher dynamic adaptability 

in the environment of cloud computing. Scheduling 

strategies are divided into a) probabilistic search, b) 

heuristics, and c) hybrid approaches. Probabilistic 

search is an extensive category of scheduling 

algorithms that include GAs, simulated annealing 

(SA) [31], and ant colony or swarm optimization. 

Heuristics are a time-effective resolution for specific 

problem space scenarios. The most common heuristic 

is list-based scheduling, which produces a priority list 

of tasks according to specific standards. 

Subsequently, tasks are allocated to resources [32]. 

Scheduling, which involves allocating resources to 

tasks, is a computational problem that is known to be 

extremely challenging to solve efficiently. As a 

result, it is typically addressed using heuristic 

methods, which are approximate algorithms or 

strategies that provide practical solutions but may not 

guarantee an optimal solution. Hybrid approaches 

combine strategies to augment algorithm 

performance. For example, [33] hybridized GA with 

SA, while Daoud and Kharma [34] hybridized 

heuristics and GA. Furthermore, based on the 

literature [35] combined ant colony and GA. WS is a 

crucial concern in workflow execution management. 

Scheduling plans and directs the implementation of 

inter-dependent tasks based on distributed resources 

[36]. Scheduling allocates appropriate resources to 

workflow tasks to complete execution to fulfill users’ 

aims and objectives and functions. Appropriate 

scheduling can substantially affect system 

performance. The fundamental objective of WS is to 

achieve the intended outcome by appropriately 

allocating tasks to suitable resources for execution. 

Presently, widely recognized aims for WS strategies 

encompass economic considerations, availability, 

minimized time requirements, optimized resource 

utilization, security, load distribution, and enhanced 

dynamic adaptability within the context of cloud 

computing [19], among various others. The 

scheduling objectives under scrutiny in this 

investigation are illustrated in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Schematic diagram of workflow scheduling objectives 
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 Cost: The distributed computing nodes within 

the cloud cluster could be geographically 

dispersed, necessitating equitable administrative 

expenses for the cloud client towards the cloud 

provider. The overall expenditure linked with the 

execution of processes in the cloud encompasses 

various cost elements, including but not limited 

to computational expenses and expenses related 

to data transmission. These specific cost factors 

will be explored in greater detail in the 

subsequent sections. The management of process 

execution costs has emerged as a significant 

objective within the realm of cloud WS 

investigations [37].  

 Makespan: The timeframe allocated for the 

execution of a workflow primarily hinges on the 

combined execution durations of individual tasks 

and the associated communication expenses 

between them. In simpler terms, it denotes the 

span commencing with the initiation of the initial 

task and concluding with the finalization of the 

last task. Ever since the inception of cloud 

computing, attaining the prescribed deadline for 

a workflow has remained a predominant 

objective across various scheduling 

methodologies.  

 In the realm of cloud computing, particularly for 

extensive data processing tasks, maintaining 

balanced work distribution holds significant 

significance. A WS approach must encompass 

the equitable distribution of workloads across 

diverse nodes within a geographically dispersed 

and varied environment, characteristic of the 

cloud. This strategic optimization contributes to 

enhancing resource utilization efficiency while 

mitigating the risk of overwhelming any specific 

resource. 

 Reliability awareness:  Reliability 

consciousness stands as another crucial 

prerequisite in the domain of process scheduling. 

Beyond time and cost considerations, the 

trustworthiness of workflow execution is taken 

into account. This aspect signifies the probability 

of accomplishing a task successfully while 

adhering to the user's predefined QoS 

constraints, even in scenarios involving failures 

of resources or tasks. To enhance this reliability, 

scheduling algorithms can employ strategies like 

active replication and backup/restart 

mechanisms. Nonetheless, these algorithms must 

diligently evaluate the expenses incurred due to 

task reiteration, encompassing factors such as 

time and computational resources 

squandered[38].  

 The pursuit of diminishing energy consumption 

is rapidly gaining prominence within the realm 

of cloud computing. With the escalation in 

demand for cloud services, data centers are 

consuming significant amounts of energy, 

underscoring the imperative for enhanced energy 

efficiency. Cloud service providers are facing 

mounting pressure to curtail their energy 

consumption rates. To address this challenge, 

contemporary algorithms have been devised to 

navigate the intricacies of harmonizing energy 

consumption, performance, and expenses. 

Nonetheless, it's crucial to acknowledge that 

energy optimization has yet to attain relevance at 

the VMs abstraction level. In summary, when 

orchestrating workflows within the context of 

cloud computing, factors such as load balancing, 

awareness of dependability, and reduction in 

energy usage assume heightened significance. 

These objectives are aligned to optimize the 

utilization of resources, ensure reliability, and 

subsequently minimize energy consumption, 

prioritized in that sequence. 

 

WS is one of the happening research topic in cloud 

computing. Simulation based approach has become 

well liked technology to evaluate cloud computing 

systems, their security and performance and 

application behaviour’s. Several simulators have 

been particularly developed for evaluation and 

performance analysis of cloud environments. 

 

2.3Task scheduling algorithms 

In the work of Zhong et al. [39] a scheduling 

approach known as greedy particle swarm 

optimization (G&PSO) was introduced. The 

outcomes demonstrated enhancements in various 

aspects of each VM performance, encompassing both 

global and local search capabilities. Additionally, the 

method exhibited accelerated convergence rates and 

contributed to a more consistent distribution of 

workloads. In the study conducted by Wei et al. [40] 

a multi-population genetic algorithm (MPGA) was 

explored for load balancing, aimed at mitigating 

premature convergence of tasks within cloud 

systems. The findings illustrated that the MPGA 

exhibited strong performance in terms of job 

scheduling, leading to reductions in execution time 

and associated costs. Lin and Li [41] devised an 

approach for scheduling tasks within cloud systems 

utilizing a pre-allocation ant colony optimization 

(PACO) framework. The proposed technique 

demonstrated strong efficiency. According to [42] 

which introduced a three-stage selection process 
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along with a genetic strategy termed "total-division-

total" to complement their genetic approach [42]. 

Utilizing the CloudSim tool, the outcomes indicated 

that the enhanced algorithm outperformed a basic GA 

concerning the duration of task completion. This 

highlighted the reliability of the improved GA as a 

viable approach for scheduling jobs within cloud 

computing. Gupta et al. [43] introduced a meta-

heuristic adaptation of the ant colony optimization 

(ACO) algorithm for the scheduling of tasks within 

cloud systems, with a focus on two primary 

objectives. The results demonstrated that the 

suggested load-balancing ant colony optimization 

(LB-ACO), when compared to the non-dominated 

sorting GA II, non-dominated sorting genetic 

algorithm (NSGA-II), exhibited superior performance 

in terms of load distribution equilibrium and 

makespan reduction. NSGA-II is an evolutionary 

optimization method that efficiently categorizes 

individuals based on their non-dominated solutions to 

effectively address multi-objective optimization 

problems. In response to scheduling challenges, Wei 

et al. introduced a scheduling approach termed self-

adaptive multi-population genetic algorithm 

(SAMPGA) [44]. The simulations revealed favorable 

outcomes, indicating that SAMPGA yielded positive 

results in relation to cost efficiency, job completion 

duration, and load balancing. 

 

3.Methodology 

In this study, the proposed e-HGA tested two levels 

of fitness, which qualified a chromosome and a gene 

to be preferred to their other counterpart in a data 

population. At the chromosome level, parents were 

randomly selected from the population and crossed 

over (mated) to produce offspring that were 

subsequently mutated by inserting random geneLists 

to maintain population diversity to avoid premature 

convergence. The fittest chromosome underwent a 

second round of native hybrid genetic algorithm 

(HGA), where two parents (geneList) were selected 

from the fittest chromosome to mate (crossover). 

Subsequently, the crossover site geneLists were 

exchanged, thus producing an entirely new individual 

(offspring). Following this, the offspring were 

mutated by inserting random genes to maintain 

population diversity to avoid premature convergence. 

This experiment was performed with the same data 

using a conventional HGA. The results were 

compared to determine whether the proposed e-HGA 

or conventional HGA performed better. 

Chromosome level: The term chromosome is used to 

symbolize the answer, which is an integer string 

made up of a series of substrings [1]. Each substring 

represents a list of nodes that a bus has visited. For 

example, the chromosomal coding for a solution with 

two routes and five pick-up and drop-off stop pairs 

(Protein Data (PD) pirs) is as follows: 0-2
+
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+
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−
-4

−
-

0-1
+
-1

−
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+
-5

+
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+
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+
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−
, 2

−
, 3

−
, 4

−
, and 

5
−
 represent drop-off stops. 0 represents a terminal, 

which divides the chromosome into multiple routes. 

The start and finish terminals are determined by the 

closeness of the nearest terminals to the first and last 

stops, respectively. In this investigation, the 

chromosome is created at random. 

Hybrid genetic algorithm (e-HGA): The 

exploration of a stochastic GA is combined with the 

accurate convergence of a deterministic method in an 

e-HGA. The new aspect is the way these algorithms 

are coupled. e-HGA includes all the processes of a 

traditional GA (e.g., selection, mating, mutating, 

elitism), but after the mutation procedure, each 

candidate is optimized locally, as shown in the 

algorithm flowchart. The combination of these two 

techniques results in an aggressive optimization 

process capable of searching the whole variable space 

while also converging on the precise local optimum 

for each candidate. In a hybrid GA, natural selection 

regulates the placement of new candidates, with the 

best candidate more likely to be put. The ability to 

obtain global optimum values that normal stochastic 

algorithms cannot detect is the key advantage. 

Elitism: Defines the highest proportion of p 

Crossover: This represents exchange of genes. Two 

chromosomes are selected using a selection operator 

and crossover sites are chosen randomly. Then the 

genes at these crossover sites are exchanged thus 

creating a completely new individual (offspring). For 

the GA.  VMs crossed over for this process. 

Mutation: Mutation is a process inserting random 

genes in offspring to maintain the diversity in the 

population to avoid premature convergence. 

 

3.1Proposed model 

The HGA comprises two levels of architecture for 

task scheduling with enhanced selection (elitism). 

The main structure contains all key e-HGA 

components with a few modifications. The e-HGA 

calculates fitness based on the size of jobs in million 

instructions (MI) and the computational power of 

VMs in MI per second (MIPS) [45]. Figure 3 depicts 

the proposed e-HGA model, which is a slight 

modification of the conventional e-HGA process 

model. The diagram contains two sections, which 

represent the e-HGA levels combined to create the e-

e-HGA. The model began with level 1 population-

level e-HGA. Parent initialization sorted the 



Awolola Tejumola Busayo et al. 

126 

 

population to select the top 10 chromosomes to 

enable crossover (mating) between two parents from 

the population. Successively, fitness evaluation 

examined the level of fitness of each chromosome to 

select the best chromosome. Subsequently, geneList 

crossover was conducted to create offspring, 

followed by mutation. Level 2 chromosome-level e-

HGA involved parent initialization to sort the 

population and select the top 10 geneLists to identify 

two parents from the best-fit chromosome selected in 

level 1 HGA. Subsequently, fitness evaluation 

examined the level of fitness of each geneList to 

select the best geneList. The next stage was the 

crossover, where Generalists within the parent 

chromosomes were exchanged to create a completely 

new geneList (offspring), while the mutation stage 

involved inserting random geneLists in the offspring 

to maintain population diversity to avoid premature 

convergence [46]. The fittest geneLists were selected 

from the best chromosomes with the fitness function. 

The improvement introduced by the proposed e-HGA 

model was described as follows: elitism (selection of 

the top 10% fittest individuals) was used to calculate 

individuals’ fitness at each level before the best fit 

was selected for mating [1].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3 Proposed HGA model 

 

The first-stage population-level e-HGA involved 

fitness, crossover, mutation, and repeat fitness until 

convergence. This stage was essential to firsthand 

fine-tune the geneLists. The subsequent stage was 

chromosome-level HGA, where the e-HGA processes 

were repeated. At the crossover stage of both levels, 

individual exchanges were conducted to create a 

wholly new individual (offspring) that would proceed 

to the mutation stage [47]. The new genes inserted 

during the mutation would be inherited at the next 

stage (new population). At the decision stage, if the 

decision outcome was negative, the process was 

iterated back to the fitness evaluation stage, from 

which the entire process was repeated until a positive 

outcome was achieved. Nonetheless, if the decision 

outcome was positive, the process would proceed to 

the chromosome fitness evaluation level, where each 

chromosome was evaluated for best fitness. The 

process was terminated once the chromosome with 

the best fitness was found.  

 

The objective function is used to provide a measure 

of how individuals have performed in the problem 

domain. In the case of a minimization problem, the fit 

individuals will have the lowest numerical value of 

the associated objective function. This raw measure 
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of fitness is usually only used as an intermediate 

stage in determining the relative performance of 

individuals in a e-HGA. Another function, the fitness 

function, is normally used to transform the objective 

function value into a measure of relative fitness, 

where f is the objective function, g transforms the 

value of the objective function to a non-negative 

number and F is the resulting relative fitness. This 

mapping is always necessary when the objective 

function is to be minimized as the lower objective 

function values correspond to fitter individuals. In 

many cases, the fitness function value corresponds to 

the number of offspring that an individual can expect 

to produce in the next generation. A commonly used 

transformation is that of proportional fitness 

assignment (see, for example, [1]). The individual 

fitness, F(xi), of each individual is computed as the 

individual’s raw performance, f(xi), relative to the 

whole population, i.e. (Equation 1), 

F(xi) = F(xi)  /  ∑      
    

   
  (1) 

 

Where Nind is the population size and xi is the 

phenotypic value of individual i. whilst this fitness 

assignment ensures that each individual has a 

probability of reproducing according to its relative 

fitness, it fails to account for negative objective 

function values. 

 

A linear transformation which offsets the objective 

function [1] is often used prior to fitness assignment, 

such that, where a positive scaling factor if the 

optimization is maximizing and negative if we are 

minimizing. The offset b is used to ensure that the 

resulting fitness values are non-negative.  
3.1.1A step-by-step description of the e-HGA 

algorithm's workflow 

The architecture of e-HGA enhances HGA for task 

scheduling at two levels with enhanced selection 

process (Elitism). The main structure has all major 

components of e-HGA with a few modifications. e-

HGA requires size of jobs in MI and computational 

power of VMs in MIPS to calculate fitness. The 

model starts with level 1 HGA at the population 

level. Initialization of parents which sorts the 

population to selects the top 10 Chromosomes to 

make two parents from the population to mate (Cross 

Over). The next stage is the evaluation of fitness 

which examine the fitness level of each Chromosome 

to select the best Chromosome to be used in the 

process, the next stage is the crossover which 

exchanges geneList within the parent Chromosomes 

to create a completely new Chromosome that can be 

called an offspring while the mutation stage inserts 

random geneList in offspring to maintain the 

diversity in the population to avoid premature 

convergence.  

 

Level 2 e-HGA at the Chromosome level involves 

initialization of parents which sorts the population to 

select the top 10 geneList to make two parents from 

the best fit Chromosome selected in level 1 e-HGA. 

The next stage is the evaluation of fitness which 

examine the fitness level of each geneList to select a 

best geneList to be used in the process, the next stage 

is the crossover which exchanges geneList within the 

parent Chromosomes to create a completely new 

geneList that can be called an offspring while the 

mutation stage inserts random geneList in offspring 

to maintain the diversity in the population to avoid 

premature convergence. The fitness function is 

further used to pick the fittest GeneList from the best 

Chromosomes. These levels of e-HGA are 

demonstrated in Figure 4. 

 

The following operation explains the improvement 

introduced by HGA model. 

1. Using Elitism which is the selection of the top 10 

percent fit individuals to calculate fitness of 

individual at each level before picking the best fit 

for mating (cross over). 

2. Do the native HGA at two levels. Make decisions 

on population using native e-HGA methods 

fitness, crossover and mutation.  

 

Figure 4 represents the proposed e-HGA process 

model which is a slight modification of the 

conventional HGA process model. The diagram is 

sectioned into two levels, which represent the 

different levels of HGA combined to create the e-

HGA. The first stage is HGA at population level. At 

this level, the process of HGA is done which is 

fitness, cross over, and mutation and repeat Fitness 

until convergence. This stage is essential to firsthand 

fine-tune geneLists which are children of a 

Chromosome. The next stage is HGA at chromosome 

level. At this level, the process of HGA is repeated 

which is fitness, cross over, and mutation and repeat 

Fitness until convergence. At the stage of crossover 

in both levels, an exchange of individuals is done to 

create a completely new individual that can be called 

an offspring that will be passed on to the next 

mutation stage. The mutation process inserts random 

genes in individuals to maintain the diversity in the 

population so as to avoid premature convergence. 

The new genes are now passed on to the next stage 

called new population. At the decision stage of the 

process, if the outcome of the decision is negative the 

process iterates back to the evaluation of fitness stage 
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and from there the whole process is repeated until the 

outcome is positive. But on the other hand, if the 

decision outcome is positive then the process 

proceeds to the evaluation of fitness of chromosome 

level, at this stage each chromosome is evaluated for 

best fitness and once the chromosome with the best 

fitness is found the process terminates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 4Proposed e-HGA Model 

                     

Figure 5 shows the overall pseudo code for e-HGA. 

Line 1 sorts of the unsorted list of VMs and places it 

in a place holder called vmList, line 2 also sort the 

unsorted cloudlets and place it a place holder called 

cloudletList, line 3 randomizes the number of 

cloudlets form 0 with the number of VMs and place 

them in a place holder called population. Line 4 

performs a doCrossOver iteration and a do Mutation 

iteration on the cloudlets placed in the population 

placeholder until a BestFitness is found, line 5 closes 

the iteration, line 6 initializes the best population to 

become the modified population, line 7 performs a 

loop were best Chromosomes in the population 

equals to fittest chromosomes found in the best 

population of chromosomes, line 8 close the whole 

algorithm. Figure 6 shows a (while) iteration 

operations performed to find the best population, line 

1 initializes foundBestFit to be false, line 2 Initializes 

previous fittest to be minimum Integer, line 3 

initializes fitness to equal 0.  Line 4 performs a while 

loop operation were found best fit is not false as basic 

parameter, at the end of the (while) operation, the last 

line of the general code returns a best population. 

 
vmList ←  Sort (unsortedVmList)  

cloutletList ←Sort (unsortedCloudletlist)  

population ← Random (from 0 until Number of 

Cloudlets ×Number of VMs)  

Until (bestFitness) { // Iteration Algorithm 

 doCrossOver (population)  

doMutation (population)  

}  

bestPopulation = modified population  

for (each Chromosome in bestPopulation) { 

 bestChromosome = findFitestChromosome ()  

} 
Figure 5 Illustration of e-HGA unsorted list of VM 

 

 Mutation  

Level 1 

Chromosome  Chromosome  . . . . . 
. 

Chromosome  

Cross Over 

Parent 1 Parent 2 

Fit Chromosome 

Chromosome 

GeneList GeneList  . . . . . 
. 

GeneList 

Cross Over 

Parent 1 Parent 2 

 Fit GeneList  

 Mutation  

Level 2 

Fit Chromosome/List of GeneList 

Fit GeneList 



International Journal of Advanced Technology and Engineering Exploration, Vol 11(111)                                                                                                             

129          

 

foundBestFit = false 

 previousFitest = MinimumInteger 

 fitness = 0  

while (foundBestFit == false) { 

tempFitValue = 0  

for i ←0 to populationSize{ 

 fit = fitnessFunction 

 tempFitValue += fit  

}  

fitness = tempFitValue 

 if fitness < previousFitest: 

 foundBestFit = true 

 if foundBestFit{  

return bestPopulation  

end while Loop  

}  

previousFitest = fitness  

doCrossOver:  

doMutation ()  

} 

return bestPopulation 

Figure 6 Iteration operations performed 

 

Figure 7 shows the cross over iteration on the 

population size of chromosomes. Line 1 assigns all 

the results of the operation performed on the 

population size to (i) in the four loops. Line 2 

randomizes index number 1 in the loop and assigns it 

to variable x. Line 3 randomizes index number 2 in 

the loop and assigns it to variable y, line 4 

getGeneList is multiplied with variable x and is 

initialized to 1. Line 5 getGeneList is multiplied with 

variable y and is initialized to 2, line 6 randomize 

new index number 1 in the loop and assigns it to 

variable I, line 7 randomize new index number 2 in 

the loop and assigns it to variable j. Line 8 gets VM 

from list 1 and in variable i and assigns it to Vm1, 

line 9 gets VM from list 1 and in variable j and 

assigns it to Vm2. Line 10 updates the chromosome 

gene with Vm1 at variable I, line 11 updates the 

chromosome gene with Vm2 at variable j. Figure 8 

shows the mutation probability iteration done on the 

chromosome population. Line 1 randomizes an empty 

parameter and assigns it to mutation probability 

(mutProb). Line 2 performs if conditions were the 

below lines are executed if the mutProb is less than 

0.5. Line 3 initializes a random to randomNumber, 

line 4 gets the GeneList and random Number and 

merges it with the population and all is assigned to 

mutGeneList. Line 5 assigns mutGeneList of the 

Chromosomes to mutChromosome, line 6 

randomizes an empty parameter and assigns it to 

randomIndex.  Line 7 randomizes an empty 

parameter and assigns it to randomIndex2, line 8 gets 

the randomIndex1 and inculcates it with VmList and 

assigns them to mutVM. Line 9 updates mutVM in 

random Index 2, and inculcates them with 

mutChromosome, Line 10 sets population 

randomNumber.  Line 11 closes the entire 

conditional if statement. 
 

for i ←  populationSize {  

x = randomlndex1 

 y = random Index2 

 I1 ← getGeneList (x)  

I2 ← getGeneList (y) 

 i = randomlndex1 

   j = randomIndex2 

 Vm1← getVmFromLl (i)  

Vm2 ← getVmFromL1 (j)  

chromosome.updateGene(with Vml at i) 

 chromosome.updateGene(with Vm2 at j) 

} 

Figure 7 Shows the cross over iteration on the 

population size of chromosomes 
 

mutProb = Random ()  

if mutProb < 0.5{ 

 randomNumber = Random () 

 mutGeneList = 

population.get(randomNumber).getGenelist() 

 mutChromosome = Chromosome (mutGeneList)  

randomlndex1 = Random () 

 randomIndex2 = Random () 

 mutVM = VmList.get (randomlndex1) 

 mutChromosome.update (mutVM at randomIndex2)  

population.set (randomNumber) 

} 

Figure 8 Shows the mutation probability iteration 

done on the chromosome population 

 

Figure 9 shows the code for finding the fittest 

chromosomes in the population of chromosomes. 

Line 1 is an if statement condition were the 

population size is assigned to variable i. Line 2 gets 

the list of gene at I and assigned the list to GeneList. 

Line 3 calculates the fitness of the GeneList, Line 4 

closes the if statement. Lines 5 get the fittest geneList 

and add it up to the population and the result is said 

to be the bestChromosome. 

 
for i ←populationSize{  

GeneList ← population.getList (gene at i)  

calculateFitness ()  

}  bestChromosome ←population.get (fittest geneList) 

Figure 9 The Code fittest chromosomes in the 

population of chromosomes 
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3.2Simulation tool 

The project data was simulated with the Eclipse tool. 

Eclipse simulates data more rapidly without 

compromising results and requiring hardware 

upgrades. An improved constrained pressure residual 

(CPR) solver enables additional residual checks for 

marked performance improvements, specifically 

when repeated non-linear convergence issues occur. 

Eclipse simulates faster without compromising 

results and without upgrading your hardware. 

Improved CPR solver enables you to provide addition 

residual checks, for dramatic improvements in 

performance, especially when there are repeated non-

linear convergence problems. 

 

3.3Test environment 

CloudSim comprises a simulation engine, cloud 

services, and source code, positioning itself as an 

extensible provisioning environment. Its layered 

construction mirrors the hierarchical nature of cloud 

computing environments. Given the rapidly evolving 

nature of cloud computing as a research area, there 

exists a shortage of well-defined standards, tools, and 

methods capable of effectively addressing the 

complexities at both the infrastructure and 

application levels. Figure 10 illustrates the layered 

structure of the CloudSim software framework and its 

architectural components. The bottom layer features 

the SimJava discrete event simulation engine [48], 

which serves as the foundation by implementing 

essential functionalities for higher-level simulation 

frameworks. These functionalities encompass event 

queuing and processing, the creation of system 

components (services, host, data center, broker, and 

VM component communication, and simulation 

clock management. Moving up the layers, the next 

tier consists of libraries that implement the GridSim 

toolkit [49]. This toolkit provides support for high-

level software components that model various Grid 

infrastructures, including networks and associated 

traffic profiles. Additionally, it includes fundamental 

Grid components such as resources, data sets, 

workload traces, and information services. The 

CloudSim layer is situated above the GridSim layer 

and is implemented by programmatically extending 

the core functionalities offered by GridSim. 

CloudSim introduces innovative support for 

modeling and simulating virtualized Cloud-based 

data center environments, featuring dedicated 

management interfaces for VMs, memory, storage, 

and bandwidth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 The layered structure of the CloudSim software framework and its architectural components 
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In this layer, cloudSim is responsible for managing 

the instantiation and execution of core entities such 

as VMs, hosts, data centers, and applications 

throughout the simulation period. It possesses the 

capability to concurrently instantiate and seamlessly 

manage a large-scale cloud infrastructure comprising 

thousands of system components. Essential tasks like 

provisioning hosts to VMs based on user requests, 

managing application execution, and dynamic 

monitoring are efficiently handled by the cloudSim 

layer. For a cloud provider seeking to investigate the 

effectiveness of different policies in host allocation, 

strategic implementations need to be incorporated at 

this layer by programmatically extending the core 

VM provisioning functionality. A notable distinction 

at this layer is the methodology employed in 

allocating a host to various competing VMs in the 

cloud. A cloud host can be concurrently shared 

among multiple VMs executing applications based on 

user defined QoS specifications. The proposed e-

HGA step by step is presented below: 

 

Step 1: e-HGA at initialization level. 

Initialize and assign cloudLets to VM. 

Input: CLoudletList, VmList 

averageNumber = cloudletsSize / VmSize; 

int rem = cloudletsSize % VmSize 

 int noVms = vmlistSize; 

             // Assign Cloudlets to VM 

          population = new List(); 

 fittnessList = new ArrayList (); 

                   

 for(int x = 0; x < 100; x++) { 

 chromosome = new List(); 

 for(int j = 0; j < 20; j++) { 

 Shuffle(vmlist); 

 Shuffle(Cloudletslist); 

 oldPosition = 0; 

 genelist = new List<>(); 

 for(int i = 0; i < noVms; i++) { 

 if(i == noVms - 1 && rem != 0) { // Assigning  the 

remaining Cloudlets to Vm if any exist. 

geneLast = new Gene2(cloudletList[oldPosition: 

cloudletListSize], vmlist[i]); 

genelist.add(geneLast); 

break; 

} 

clts = cloudletList[oldPosition : (i + 1)×aveCls]; 

gene = new Gene2(clts, vmlist[i]); 

oldPosition = (i + 1) × averageNumber; 

 if(i < noVms) { 

 genelist.add(gene); 

} 

} 

chromosome.add(genelist); 

} 

population.add(chromosome); 

} 

Step 2: e-HGA at Population Level. 

Input: CLoudletList, VmList, Population 

converged = false; 

convValues = new List(); 

convValues.add(average(fitnessPopulation(populatio

n))); 

best = population //From initialization 

while(converged == false) { 

srt = sortPopulation(population); 

 newGeneration = new List ();                         

// ELITISM: 10% of the best 

newGeneration = srt[0, (10 × srt.size/100)]; 

parent1 = new List(); 

parent2 = new List(); 

//CROSS_OVER or MUTATION 

parent1.addAll(srt[0, srt.size]); 

parent2.addAll(srt[0, srt.size]); 

p = mate(parent1, parent2, cloudletList, vmlist); 

 newGeneration.addAll(p); 

population = newGeneration; 

avg = average(fitnessPopulation(population)); 

miniValue = Collections.min(convValues) 

if(avg < miniValue) { 

best = newGeneration; 

} 

sort(convValues); 

if(convValues.size > 500 || avg < min(convValues )) 

{ 

converged = true; 

} 

if(convValues.size() > 500) { 

converged = true; 

} 

convValues.add(avg); 

} 

bestChromosome = pickBestChromosome(best); 

Step 3: e-HGA at chromosome level. 

Input: CLoudletList, VmList, bestChromosome. 

bestGeneList = population[0]; // INITIALISED 

bestGeneList from one chromosome, the value will 

be reassigned 

converged = false; 

while(converged == false) { 

 srt = sortChromosome(bestChromosome); 

newGeneration = new List(); 

// ELITISM: 10% of the best 

newGeneration = srt[0, (10 × srt.size/100)]; 

parent1 = new List(); 

parent2 = new List(); 

//CROSS_OVER or MUTATION 
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parent1.addAll(srt[0, srt.size]); 

parent2.addAll(srt[0, srt.size]); 

p = mateChromosomes(parent1, parent2, 

cloudletList, vmlist); 

newGeneration.addAll(p); 

avg = fitnessChromosome(newGeneration); 

minimum = Collections.min(convValues) 

if(avg < minimum) { 

bestGeneList = newGeneration; 

} 

sort(convValues); 

minimum = Collections.min(convValues) 

if(convValues.size() > 500 || avg < minimum { 

converged = true; 

} 

if(convValues.size() > 500) { 

converged = true; 

} 

convValues.add(avg); 

} 

Step 4: Final assignment and running cloudsim 

Input: CLoudletList, VmList, bestGeneList. 

bestGeneListList = pickBestGenelist(bestGeneList); 

clts = new List(); 

for(Gene2 gene: bestGeneListList) { 

for(i = 0; i < gene.getCloudletsFromGene().size(); 

i++) { 

clt = gene.getCloudletsFromGene().get(i); 

clts.add(clt); 

clt.setUserId(brokerId); 

clt.setVmId(gene.getVmFromGene().getId()); 

} 

} 

broker.submitCloudletList(clts); 

broker.submitVmList(vmlist); 

Fitness Population 

Input: Population. 

function fitnessPopulation { 

fitness = 0; 

fitnessList = new List(); 

for(List<Gene2> chromo : population) { 

fitness = fitnessChromosome(chromo); 

fitnessList.add(fitness); 

} 

return fitnessList; 

} 

Fitness Chromosome 

function fitnessChromosome(List<List<Gene2>> 

chromo) { 

fitness = 0; 

for (List<Gene2> cr1: chromo) { 

for (Gene2 gene: cr1) { 

 fitness +=  fitnessGene(gene); 

} 

} 

return fitness; 

} 

Fitness Gene 

function fitnessGene(Gene2 gene) { 

int fitness = 0; 

Vm vm = gene.getVmFromGene(); 

List<Cloudlet> clt = gene.getCloudletsFromGene(); 

for (Cloudlet ct: clt) { 

fitness += ct.getCloudletLength() / vm.getMips(); 

} 

return fitness; 

} 

PickBestGeneList function: 

function pickBestGenelist(List<List<Gene2>> 

chromosome){ 

best= new List(); 

bestValue = Integer.MAX_VALUE; 

for(int i = 0; i< chromosome.size; i++) 

{ 

int fitValue = 

fitnessChromosome2(chromosome.get(i)); 

if(fitValue < bestValue) 

{ 

best = chromosome.get(i); 

bestValue = 

fitnessChromosome2(chromosome.get(i)); 

} 

} 

return best; 

} 

Mate function: 

Input: 

static mate(List<List<List<Gene2>>> parent1, 

List<List<List<Gene2>>> parent2, sortedList, 

List<Vm> sortedListVm){ 

children = new List(); 

for(int x = 0; x < (90 × parent1.size/100); x++) { 

Random rand = new Random(); 

Double randNum = rand.nextDouble(1); 

if(randNum < 0.45) { 

children.add(parent1.get(x)); 

} else if(randNum <= 1.0) { 

 children.add(parent2.get(x)); 

} 

} 

return children; 

} 

Mate Chromosomes: 

static mateChromosomes(List<List<Gene2>> 

parent1, List<List<Gene2>> parent2, List<Cloudlet> 

sortedList, List<Vm> sortedListVm){ 

 = new List(); 

for(int x = 0; x < (90 × parent1.size()/100); x++) { 
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Random rand = new Random(); 

Double randNum = rand.nextDouble(1); 

if(randNum < 0.45) { 

 children.add(parent1.get(x)); 

} else if(randNum <= 1.0) { 

 children.add(parent2.get(x)); 

} 

} 

return children; 

} 

Fitness Chromosome 2 

static int fitnessChromosome2(List<Gene2> chromo) 

{ 

 int fitness = 0; 

for (Gene2 geneList: chromo) { 

fitness +=  fitnessGene(geneList); 

} 

return fitness; 

} 

// Explanation of HGA Mechanism 

e-HGA at Population Level. 

Input: CLoudletList, VmList, Population                

converged = false; 

convValues = new List(); 

 convValues.add(average(fitnessPopulation(p

opulation))); 

best = population //From initialization                  

while(converged == false) { 

srt = sortPopulation(population); // Sorts population 

according to Cloudlet length / MIPS 

newGeneration = new List(); 

// ELITISM: 10% of the best 

newGeneration = srt[0, (10 × srt.size/100)]; //Pick the 

Top 10% Best 

parent1 = new List(); // Initialize one parent 

parent2 = new List(); // Initialize another parent 

//CROSS_OVER or MUTATION 

parent1.addAll(srt[0, srt.size]); // Adds all Top 10% 

Best to one parent 

parent2.addAll(srt[0, srt.size]); // Adds all Top 10% 

Best to another parent 

p = mate(parent1, parent2, cloudletList, vmlist); // 

Mate parents, mutation and cross over randomly. 

newGeneration.addAll(p); // Adds all to a 

allGeneration. 

population = newGeneration; 

avg = average(fitnessPopulation(population)); // 

Calculate the average of all population fitness. 

miniValue = Collections.min(convValues) // Finds 

the minimum of averages to determine convergence. 

if(avg < miniValue) { // Determines convergence. 

best = newGeneration; // If converged, save the best 

} 

sort(convValues); // Sort the average values to be 

used in the loop. 

if(convValues.size > 500 || avg < min(convValues )) 

{ // Terminate loop if not converged at 500 iteration 

converged = true; 

} 

if(convValues.size() > 500) {// Terminate loop if not 

converged at 500 iteration 

converged = true; 

} 

convValues.add(avg); //Adds average value to be 

tested for convergence. 

} 

bestChromosome = pickBestChromosome(best); // 

Pick best chromosome. 

e-HGA at Chromosome Level. 

Input: CLoudletList, VmList, bestChromosome. 

bestGeneList = population[0]; // INITIALISED 

bestGeneList from one chromosome, the value will 

be reassigned 

converged = false; 

while(converged == false) { 

srt = sortChromosome(bestChromosome); // Sorts 

population according to Cloudlet length / MIPS 

newGeneration = new List();            

// ELITISM: 10% of the best 

newGeneration = srt[0, (10 × srt.size/100)]; //Pick the 

Top 10% Best 

parent1 = new List(); // Initialize one parent 

parent2 = new List(); // Initialize another parent 

//CROSS_OVER or MUTATION 

parent1.addAll(srt[0, srt.size]); // Adds all Top 10% 

Best to one parent 

parent2.addAll(srt[0, srt.size]); // Adds all Top 10% 

Best to another parent 

p = mateChromosomes(parent1, parent2, 

cloudletList, vmlist); // Mate parents, mutation and 

cross over randomly. 

newGeneration.addAll(p); // Adds all to a 

allGeneration. 

avg = fitnessChromosome(newGeneration); // 

Calculate the fittest chromosome. 

minimum = Collections.min(convValues) // Finds the 

minimum of averages to determine convergence. 

if(avg < minimum) { // Determines convergence. 

bestGeneList = newGeneration; // If converged, save 

the bestGeneList 

} 

sort(convValues); // Sort the average values to be 

used in the loop. 

minimum = Collections.min(convValues) 

if(convValues.size() > 500 || avg < minimum { // 

Terminate loop if not converged at 500 iteration 

converged = true; 
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} 

if(convValues.size() > 500) {// Terminate loop if not 

converged at 500 iteration 

converged = true; 

} 

convValues.add(avg); //Adds average value to be 

tested for convergence. 

} 

Final assignment and running Cloudsim 

Input: CLoudletList, VmList, bestGeneList. 

bestGeneListList = pickBestGenelist(bestGeneList); 

clts = new List(); 

for(Gene2 gene: bestGeneListList) { 

for(i = 0; i < gene.getCloudletsFromGene().size(); 

i++) { 

clt = gene.getCloudletsFromGene().get(i); // Gets 

CloudLet 

 clts.add(clt); 

clt.setUserId(brokerId); Set BrokerId of CloudLet 

 clt.setVmId(gene.getVmFromGene().getId()

); // Set VmId of Cloudlet to bind it to the VM 

} 

} 

broker.submitCloudletList(clts); 

 broker.submitVmList(vmlist);  

  
The assessment is conducted based on the fitness 

function outlined in Equation 1. Elitism is introduced 

in e-HGA at lines 9 and 10, ensuring the replication 

of the best chromosomes from each generation to the 

next. This inclusion prevents the deterioration of 

solution quality in e-HGA. The selection process at 

line 19 is detailed in step 2, where fit chromosomes 

are chosen using binary tournament selection for 

genetic operations. The selected chromosomes then 

undergo modified crossover and mutation processes, 

distinguishing the proposed e-HGA from existing 

HGAs. Notably, both genetic operators' effectiveness 

is doubled through the combination of single- and 

double-point crossover and mutation. The 

pseudocode for these crossover and mutation routines 

is presented in steps 3 and 4, respectively. Following 

each generation, a neighborhood search is executed 

using a load-balancing function, as outlined in 

algorithm 5. The conclusion of each generation is 

marked at line 28 of step 1, and the algorithm iterates 

to line 5 for the next generation until termination 

criteria are satisfied. 

 

4. Results  
The primary distinguishing factor in cloud WS as 

opposed to scheduling in multiprocessor or grid 

systems, is the emphasis on utility. In the latter two 

systems, scheduling primarily revolves around 

meeting deadlines or minimizing the makespan of a 

workflow. In contrast, in the "pay-as-you-go" cloud 

environment, economic cost is as crucial as 

performance. Resources are typically provisioned as 

VMs in the cloud, with virtualization technology 

forming the foundation of IaaS clouds. This 

technology is a key differentiator from utility grid 

computing [50]. However, current virtualization 

technology falls short of providing stable 

performance guarantees. Sharifi et al. [51] 

documented an overall central processing unit (CPU) 

performance variability of 24% on Amazon's EC2 

cloud, attributing it to resource sharing and 

competition among co-scheduled VMs on the same 

physical machine. This performance instability 

renders scheduling methods reliant on task runtime 

estimations unsuitable in such an environment. 

Consequently, new WS Methods have been 

developed specifically for cloud environments. 

 

WS is a well-known NP hard problem that is being 

studied extensively by researchers to enhance 

workflow execution performance. NP-hard problems 

are generally referred to as problems that can be 

reduced to a different problem that is solved using a 

polynomial time on a nondeterministic machine, such 

as an optimization problem, a fractional knapsack, a 

travel salesman, etc. The experimental performance 

matrix of our e-HGA as against a regular HGA using 

some variance of CloudLet while the experiment was 

done using an increasing number of VM, the result of 

our experiment shows that the e-HGA performed 

better than a regular HGA The performance metric 

used is makeSpan. MakeSpan is the maximum time it 

takes for a single VM to complete all tasks or jobs 

assigned to it. In our experiment, for example, in 

Table 1, 15 cloudlet tasks were assigned to a VM. 

The makespan time of a conventional HGA took 

9.668 seconds, while that of an e-HGA took 8.996 

seconds. These show that the e-HGA performs better 

than a normal HGA. The graph in Figure 11 shows 

that the blue bars, representing the HGA, are taller 

than the red bars, which represent the e-HGA. The 

ascending order of the graph shows that the outcome 

of the experiment increases as the number of 

cloudlets increases. This study considered cloudlet 

characteristics with different lengths with a constant 

network environment and VM with different MIPS. 

In addition, the e-HGA algorithm was tested with 

varying VMs and cloudlets (Tasks) to observe their 

behavior. The same process was repeated for: 

shortest job first and first come first serve algorithm 

system. The algorithms’ performance was recorded 

based on the performance metrics. It is recommended 
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that further research work should be carried out in the 

area of workflow scheduler using different type HGA 

to further optimize the workflow result in the area of 

efficiency and resource management. 

   

The primary distinguishing factor between WS in the 

cloud and in multiprocessor or grid systems lies in 

the emphasis on utility in the latter two systems, 

scheduling revolves around meeting deadlines or 

minimizing the overall time required for a workflow. 

However, in the cloud environment, where users are 

charged for resources based on usage, economic costs 

are equally important as performance considerations 

[52]. Cloud resources are typically provided as VMs, 

and the underlying virtualization technology serves 

as the foundation for constructing IaaS clouds. This 

technology is crucial and sets cloud computing apart 

from utility grid computing. In the context of this 

study, a population refers to a collection of 

simultaneous search points or sets of chromosomes 

(or individuals). Each iterative step that produces a 

new population is referred to as a generation. The 

HGA is a GA that has been combined with a local 

search procedure. The hybridization of GA with a 

gradient-based search method can help overcome 

certain limitations specific to GA. With each 

iteration, this hybridization can enhance the 

exploration of the solution search space, ultimately 

reducing computation time. To evaluate the 

performance of the proposed e-HGA compared to a 

conventional HGA, an experiment was conducted 

using an increasing number of VMs [53]. The 

experimental performance metrics of both algorithms 

are presented in the Tables and graphs in the 

subsequent sections, specifically focusing on cloudlet 

variance. 

  

Table 1 shows the result of the experiment using e-

HGA in comparison to HGA. From Table 1, 

makeSpan is the time taken for a task (Cloudlet) to 

complete using the HGA against e-HGA. The 

experiment started using 15 cloudlets assigned to 5 

VM and our cloudlets were increased by 5 in each 

experiment. It takes the HGA 9.668 seconds to 

complete the task, while our e-HGA takes 8.996 

seconds to execute the same task. The experimental 

performance matrix of the e-HGA as against a 

regular HGA using some variance of cloudLet while 

the experiment was done using an increasing number 

of VM, the result revealed that the e-HGA performed 

better than a regular HGA. The performance metric 

used is makeSpan. MakeSpan is the maximum time it 

takes for a single VM to complete all tasks or jobs 

assigned to it. In our experiment, for example, in 

Table 1, 15 cloudlet tasks were assigned to a VM. 

The make-span time of a conventional GA took 9.668 

seconds, while that of a HGA took 8.996 seconds. 

These show that the e-HGA performs better than a 

normal HGA. 

 

Table 1 5 VM MakeSpan of HGA against e-HGA 

  5 Virtual machines 

   MakeSpan 

 S/N Cloudlets HGA e-HGA 

1 15 9.668 8.996 

2 20 11.534 9.172 

3 25 12.034 11.712 

4 30 13.65 13.18 

5 35 14.568 14.9 

6 40 16.204 16.566 

7 45 17.82 17.886 

8 50 20.362 19.542 

9 55 21.18 21.17 

10 60 22.59 21.18 

 

Table 2 presents the experimental findings related to 

the performance of the conventional HGA and the 

proposed e-HGA. The evaluation metric used in this 

study was the makeSpan, which represents the time 

required for task completion (cloudlet) using either 

algorithm. The makeSpan serves as a valuable metric 

for assessing the performance of VM executing 

cloudlets in cloud computing. It quantifies the total 

time required for completing a set of tasks, making it 

a crucial indicator of scheduling efficiency. A 

reduced makeSpan signifies effective resource 

allocation, optimized task execution, and minimized 

idle time on VMs thereby indicating a more efficient 

scheduling strategy in the context of cloud 

computing. The experiment commenced with 20 

cloudlets assigned to 10 VMs. The conventional 

HGA completed the task in 9.014 s, whereas the e-

HGA accomplished it in 8.698 s. With 30 cloudlets 
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on 10 VMs, the conventional HGA and e-HGA 

required 9.95 s and 9.148 s, respectively, for task 

completion. Increasing the number of cloudlets to 40, 

the conventional HGA and e-HGA took 10.674 s and 

9.558 s, respectively. When 50 cloudlets were 

assigned to 10 VMs, the conventional HGA 

completed the task in 11.01 s, while the e-HGA 

required 12.863 s. Subsequently, with 60 cloudlets on 

10 VMs, the conventional HGA and e-HGA achieved 

task completion in 14.74 s and 14.242 s, respectively. 

For 70 cloudlets on 10 VMs, the conventional HGA 

and e-HGA required 15.38 s and 17.25 s, 

respectively. Based on the research conducted by 

[54] that used the same method to decision-making to 

cut server-side computation time and cost. To 

optimize the VM both locally and globally, this study 

presents hybrid optimization. The parameter-efficient 

fine-tuning (PEFT) algorithm was used to initialize 

the system and functioned as a heuristic algorithm. 

This approach lowers the error associated with 

random optimization initialization. Flower pollination 

with grey wolf optimization (GWO) utilizing a 

hybrid technique yields significantly better end 

results than flower pollination with a GA. The 

suggested method additionally took into account the 

dependability parameter for various operations [54]. 

 

Table 2 The 10-VM MakeSpan of e-HGA against a 

conventional HGA 

10 Virtual machines 

S/N   MakeSpan 

 Cloudlets HGA e-HGA 

1 20 9.014 8.698 

2 30 9.95 9.148 

3 40 10.674 9.558 

4 50 11.01 12.863 

5 60 14.74 14.242 

6 70 15.38 17.25 

7 80 16.56 17.06 

8 90 19.2 18.84 

9 100 19.5 18.53 

10 110 21 20.72 

 

Moving on to 80 cloudlets on 10 VMs, the 

conventional HGA and e-HGA took 16.56 s and 

17.06 s, respectively, for task completion. With 90 

cloudlets on 10 VMs, the conventional HGA and e-

HGA required 19.2 s and 18.84 s, respectively. 

Similarly, for 100 cloudlets on 10 VMs, the 

conventional HGA and e-HGA achieved task 

completion in 19.5 s and 18.53 s, respectively. 

Finally, with 110 cloudlets on 10 VMs, the 

conventional HGA and e-HGA completed the task in 

21.0 s and 20.72 s, respectively. The experimental 

results indicate that the proposed e-HGA generally 

outperformed the conventional HGA in terms of task 

execution time. However, it is noteworthy that the 

conventional HGA exhibited faster performance than 

the e-HGA when 50 and 70 cloudlets were assigned 

to 10 VMs. Thus, further research is necessary to 

elucidate these findings more comprehensively. 

  

Figure 11 illustrates the graph for the 50 and 70 

cloudlets experiment; the blue conventional HGA 

bars are all taller than the red e-HGA bars. The 

ascending order of the graph demonstrates that the 

experiment outcome increased together with the 

number of cloudlets. Table 3 presents the 

experimental results comparing the performance of 

the conventional HGA with the proposed e-HGA. 

The experiment involved increasing the number of 

cloudlets by 20 in each iteration starting with 40 

cloudlets assigned to 20 VMs. starting with 40 

cloudlets assigned to 20 VMs. The conventional 

HGA completed the task in 10.1 s, while the 

proposed e-HGA achieved task completion in 9.77 s 

for this initial setup. As 60 cloudlets were executed 

on 20 VMs, the conventional HGA and e-HGA 

required 10.9 s and 10.1 s, respectively, for task 

completion. With 80 cloudlets on 20 VMs, the 

conventional HGA and e-HGA took 13.97 s and 

10.47 s, respectively, to complete the task.  

 

Table 3 The 20-VM MakeSpan of enhanced e-HGA 

against a conventional HGA 

20 Virtual machines 

S/N   MakeSpan 

  Cloudlets HGA e-HGA 

1 40 10.1 9.77 

2 60 10.9 10.1 

3 80 13.97 10.47 

4 100 15.07 14.53 

5 120 16.6 15.57 

6 140 18.98 17.38 

7 160 20.8 18.93 

8 180 21.94 19.18 

9 200 24.57 20.85 

10 220 26.51 22.43 

 

Increasing the number of cloudlets to 100 on 20 

VMs, the conventional HGA and e-HGA completed 

the task in 15.07 s and 14.53 s, respectively. For 120 

cloudlets on 20 VMs, the conventional HGA and e-

HGA achieved task completion in 16.6 s and 15.57 s, 

respectively. Similarly, with 140 cloudlets on 20 

VMs, the conventional HGA and e-HGA required 

18.98 s and 17.38 s, respectively, for task completion. 

With 160 cloudlets on 20 VMs, the conventional 

HGA and e-HGA completed the task in 20.8 s and 

18.93 s, respectively. Moving on to 180 cloudlets on 
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20 VMs, the conventional HGA and e-HGA required 

21.94 s and 19.18 s, respectively, for task completion. 

With 200 cloudlets on 20 VMs, the conventional 

HGA and e-HGA achieved task completion in 24.57 

s and 20.85 s, respectively. Furthermore, with 220 

cloudlets on 20 VMs, the conventional HGA and e-

HGA completed the task in 26.51 s and 22.43 s, 

respectively. Consistent with previous findings, the 

results clearly demonstrate that the proposed e-HGA 

outperformed the conventional HGA in terms of task 

execution time. Table 4 depicts the experimental 

results of increasing the cloudlet number by 30 for 

each experiment. The experiment began with 60 

cloudlets assigned to 30 VMs. The conventional 

HGA required 11.45 s to complete the task while the 

proposed e-HGA required 9.074 s to execute the 

same task.  As soon as 90 cloudlets were executed on 

30 VMs, the conventional HGA and e-HGA achieved 

task completion in 14.49 s and 9.7 s, respectively. 

With 120 cloudlets on 30 VMs, the conventional 

HGA and e-HGA required 16.06 s and 10.42 s, 

respectively, for task completion. Increasing the 

number of cloudlets to 150 on 30 VMs, the 

conventional HGA and e-HGA completed the task in 

19.96 s and 10.15 s, respectively. For 180 cloudlets 

on 30 VMs, the conventional HGA and e-HGA 

achieved task completion in 21.86 s and 13.74 s, 

respectively. 

 

Table 4 The 30-VM MakeSpan of the e-HGA against 

a conventional HGA 

30 Virtual machines 

S/N   MakeSpan 

  Cloudlets HGA e-HGA 

1 60 11.45 9.074 

2 90 14.49 9.7 

3 120 16.06 10.42 

4 150 19.96 10.15 

5 180 21.86 13.74 

6 210 25.05 16.322 

7 240 27.44 18.22 

8 270 31.93 18.3 

9 300 33.78 23.3 

10 330 36.576 22.17 

 

Similarly, with 210 cloudlets on 30 VMs, the 

conventional HGA and e-HGA required 25.05 s and 

16.322s, respectively, for task completion. 

Furthermore, with 240 cloudlets on 30 VMs, the 

conventional HGA and e-HGA completed the task in 

27.44 s and 18.22 s, respectively. With 270 cloudlets 

on 30 VMs, the conventional HGA and e-HGA 

achieved task completion in 31.93 s and 18.3 s, 

respectively. The completion time increased as 300 

cloudlets were run on 30 VMs, with the conventional 

HGA and e-HGA requiring 33.78 s and 23.3 s, 

respectively, for task completion. Finally, with 330 

cloudlets on 30 VMs, the conventional HGA and e-

HGA completed the task in 36.576 s and 22.17 s, 

respectively. Consistent with previous findings, these 

results demonstrate that the proposed e-HGA 

generally outperforms the conventional HGA in 

terms of task execution time. Aziza and Krichen 

developed a GA based technique for modeling and 

solving a workflow-scheduling problem in cloud 

computing. The heuristic model and heterogeneous 

earliest finish time (HEFT) interfere in the formation 

of the starting population. Based on simulation 

findings utilizing real-world scientific process 

datasets, we show that the suggested technique 

outperforms existing HEFT and other strategies 

investigated in this research. In other words, 

investigations reveal that our suggested technique is 

highly efficient, making it potentially relevant for 

cloud WS. We created a GA-based module that was 

incorporated into the workflowSim framework, 

which is based on cloudSim [55]. Table 4, where the 

blue HGA bars are taller than the red e-HGA bars. 

The ascending order of the graph demonstrates that 

the experimental outcome increased together with the 

cloudlet number. The results also demonstrated that 

the proposed e-HGA performed better than the 

conventional HGA. 

 

5. Discussion 
Cloud WS differs significantly from scheduling in 

multiprocessor or grid systems due to its emphasis on 

utility. Unlike the latter two systems, where 

scheduling is primarily focused on meeting deadlines 

or minimizing workflow makeSpan, the "pay-as-you-

go" cloud environment places equal importance on 

economic cost and performance. In the cloud, 

resources are commonly provisioned as VM, and 

virtualization technology serves as the basis for IaaS 

clouds. This technological approach sets cloud 

scheduling apart from utility grid computing [8].  

Despite the widespread use of virtualization 

technology, it currently struggles to provide stable 

performance guarantees. Schad et al. [56] found a 

24% overall CPU performance variability on 

Amazon's EC2 cloud, attributing it to resource 

sharing and competition among co-scheduled VMs 

on the same physical machine. This performance 

instability makes scheduling methods relying on task 

runtime estimations impractical in such 

environments. Consequently, new WS methods have 

been specifically developed for cloud environments. 

WS, a well-known NP hard problem, is extensively 

studied by researchers aiming to enhance workflow 
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execution performance. NP-hard problems are 

generally those that can be reduced to a different 

problem solved using polynomial time on a 

nondeterministic machine, such as optimization 

problems like the fractional knapsack or the traveling 

salesman. 

 

In our experiments, we evaluated the performance of 

our e-HGA against a regular HGA using a variant of 

CloudLet. The experiments involved an increasing 

number of VM. The results demonstrated that the e-

HGA outperformed the regular HGA, with the 

performance metric being makeSpan. MakeSpan is 

defined as the maximum time it takes for a single 

VM to complete all assigned tasks or jobs. For 

instance, in Table 1, where 15 cloudlet tasks were 

assigned to a VM, the makeSpan time for the 

conventional HGA was 9.668 seconds, while the e-

HGA took 8.996 seconds. These results indicate the 

superior performance of the e-HGA compared to the 

normal HGA. 

 

The graphical representation in Figure 11, with blue 

bars representing HGA and red bars representing e-

HGA, further supports these findings. The ascending 

order of the graph illustrates that the experiment's 

outcome improves as the number of cloudlets 

increases. This study considered cloudlet 

characteristics with varying lengths, maintaining a 

constant network environment, and VM with 

different MIPS. Additionally, the e-HGA algorithm 

underwent testing with varying VMs and cloudlets 

(Tasks) to observe its behavior. Similar processes 

were repeated for the shortest job first and first-

come-first-serve algorithm systems. The algorithms' 

performance was recorded based on the specified 

performance metrics. The study recommends further 

research to explore workflow schedulers using 

different types of HGA for optimizing workflow 

efficiency and resource management. WS is a well-

known NP hard problem, which is being studied 

extensively by researchers to enhance the workflow 

execution performance. NP-hard generally refer to as 

problems that can be reduced to a different problem 

which are solved using a polynomial time on a 

nondeterministic machine such as optimization 

problem, Fractional Knapsack, Travel salesman etc. 

The proposed e-HGA collected tasks and mapped 

them evenly to the VMs. The results contributed to 

research on task scheduling optimization by 

scheduling task operations to reduce cost, enable 

efficient resource allocation, and manage time. 

Summary this study examined cloud computing and 

its concepts and subsequently considered cloudlet 

characteristics using different lengths with a constant 

network environment and VMs with different MIPS. 

The proposed e-HGA was tested with an increasing 

number of VMs to observe its behavior. The process 

was repeated using an increasing number of 

cloudlets. Based on the results, it was concluded that 

the number of cloudlets increased simultaneously 

with the increased number of VMs. Overall, the e-

HGA performed better than the conventional HGA, 

and only seldom performed poorly in comparison to 

the conventional HGA. Therefore, it is recommended 

that further research be conducted in the area of 

makeSpan and cost of VM-scheduled task execution 

on cloud computer workflow schedulers using 

different HGAs to minimize cost and time in relation 

to the resources allocated for VM task execution. It is 

recommended that further research work should be 

carried out in the area of workflow scheduler using 

different types of HGA to further optimize the 

workflow result in the area of efficiency and resource 

management. 

 

5.1Related research study 

Based on the research conducted by Arif et al. [57] 

that introduced a machine learning-based downtime 

optimization (MLDO) strategy in 2016, which is an 

adaptive live migration technique based on predictive 

mechanisms that lowers downtime during live 

migration over wide area networks for normal 

workloads. Our key contribution is to use machine 

learning approaches to decrease downtime. Machine 

learning approaches are also employed in the 

prediction model, and adaptive threshold levels 

include automated learning. In terms of downtime 

noticed throughout the migration process, we 

compare our suggested strategy to existing solutions 

and find improvements of up to 15% [57]. A 

represented range of contemporary scientific 

difficulties using five procedures genetic algorithm- 

education and technology institute (GA-ETI) was 

tested and demonstrated its superiority against three 

well-known and up-to-date schedulers in this field 

(HEFT, provenance, and feature selective validation 

(FSV). Their investigation demonstrates that GA-ETI 

solutions have a shorter timeframe and lower 

monetary cost when compared to HEFT alternatives. 

Unlike FSV, GA-ETI generates a comprehensive 

scheduling configuration prior to execution that is of 

higher quality. Unlike Provenance, GA-ETI creates 

its own scheduling configuration and only uses a 

workflow manager system as a middleware to carry 

out scheduling choices [58]. GA-ETI also indicated 

that, contrary to popular belief, effective workflow 

execution does not need a large number of resources 
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(in comparison to the number of parallel nodes) in 

most circumstances. To continue this effort, the 

research intends to develop/incorporate cloud pricing 

models that take into account the variation of VM 

hiring costs during scheduling. Their research will 

also concentrate on performance oscillation in cloud 

systems and its influence on application execution 

[58]. As it was explained in the literature by [59] that  

identified limitations in the ant lion optimizer (ALO) 

and sine cosine algorithm (SCA) when applied to 

high complexity functions, as they tended to 

converge to local optima [59]. To address this issue, 

the researchers introduced a novel hybrid algorithm 

by combining ALO with SCA for multi-objective 

optimization in scheduling SWFs. The key 

innovation involved incorporating a greedy approach 

and introducing randomness based on chaos theory 

within a green cloud computing framework. The 

primary objectives of the algorithm were to minimize 

task makeSpan and cost, reduce energy consumption 

for a more environmentally friendly cloud computing 

environment, and enhance throughput. The 

researchers implemented their approach using the 

workflowSim simulator and compared the results 

with the strength Pareto evolutionary algorithm 

(SPEA) WS workflow algorithm. The outcomes 

demonstrated a notable reduction in both energy 

consumption and makeSpan, showcasing the efficacy 

of the proposed hybrid algorithm [59]. 

 

To produce an initial population, based on the 

research conducted by Aziza and Krichen (2020) that 

suggest a hybrid GA-based technique combined with 

HEFT [55]. They are searching for a solution that 

offers the optimal trade-off between time and cost 

while fulfilling the timeline and budget limits in their 

recommended strategy. Their model's primary 

function is to optimize the time required to conduct a 

group of interdependent operations in the cloud, 

lowering computational costs while meeting 

deadlines and budgets. To that end, they provide a 

hybrid strategy based on a GA for modeling and 

improving a workflow-scheduling problem in cloud 

computing. The HEFT interferes in the formation of 

the starting population [55]. Based on the results of 

their simulations utilizing real-world scientific 

process datasets, the suggested strategy outperforms 

existing HEFT and other strategies investigated in 

this study. In other words, experiments suggest that 

their proposed technique is highly efficient, making it 

potentially relevant for cloud WS. They created a 

GA-based module that was incorporated into the 

workflowSim framework, which is based on 

cloudSim [55]. Flower pollination algorithm (FPA) 

and GWO techniques proposed by [54] are employed 

as a hybrid employing PEFT algorithm for global and 

local optimization. The major purpose of the WS 

algorithm is to save time and money by utilizing VM 

migration [54]. In NP time, this method solves the 

subset problem and the choice problem. It works on 

the decision-making process to minimize server-side 

computation time and cost. This research suggests 

using hybrid optimization to improve the VM both 

locally and globally.  The PEFT algorithm was used 

to initialize the system and functioned as a heuristic 

algorithm. This approach lowers the error associated 

with random optimization initialization. Flower 

pollination with GWO utilizing a hybrid technique 

yields significantly better end results than flower 

pollination with a GA. The suggested method 

additionally took into account the dependability 

parameter for various operations [54]. Introduce of an 

advanced HGA known as the e-HGA by [60], this 

novel approach combines the power of GAs with the 

efficiency of local search techniques. As a result, the 

e-HGA exhibits the capability to effectively navigate 

the solution space, preserve diversity, and converge 

towards high-quality scheduling solutions tailored for 

optimizing cloud workflows. A comparative analysis 

between the e-HGA and the conventional HGA 

demonstrated that the e-HGA outperformed the latter 

in terms of task completion speed across the majority 

of cases. In scenarios involving the execution of 50 

and 70 cloudlets across ten VMs, it was observed that 

the conventional HGA outperformed the e-HGA in 

terms of execution speed. To illustrate, when 20 

cloudlets were allocated to 10 VMs, the traditional 

HGA completed the task in 9.014 seconds, while the 

e-HGA achieved it in 8.698 seconds. As the count of 

both VMs and cloudlets increased concurrently, the 

traditional HGA consistently maintained its 

advantage over the e-HGA in terms of execution 

times. Our investigation leads to the conclusion that 

the performance of scheduling algorithms is notably 

influenced by the specific configuration of cloudlets 

and VMs. 
 

5.2Performance analysis and discussion 

In this segment, we conduct a comprehensive 

analysis of the performance of the proposed 

algorithm, e-HGA. The evaluation involves utilizing 

datasets with diverse characteristics, and the obtained 

results are compared against several selected 

algorithms, namely heuristics Microsoft certified 

professional (MCP) and HEFT, a generic 

evolutionary algorithm and recently introduced HGA 

and hybrid Self-Improved chimp optimization 

algorithm with glow swarm optimization algorithm 
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(HSCGS) The inclusion of these algorithms, which 

are based on different approaches, provides a solid 

foundation for studying and comparing the behavior 

of e-HGA. For the performance metric, we selected 

30 VM. The VMs across all algorithms exhibit a 95% 

confidence interval for their corresponding values. 

This implies that for any workflow of a similar 

nature, the schedule length would fall within the 

given interval with 95% certainty. In some bar charts, 

the confidence interval may not be visually 

distinguishable from the mean value due to the scale 

used in those graphs (see Figure 11). 

 

 
Figure 11 Performance of 30 Cloudlets at 100 population size 

 

The proposed algorithm undergoes evaluation 

through simulations on a target system characterized 

by heterogeneity. Both resources and network links 

in the execution environment are heterogeneous. As 

tasks vary based on the workload type, the 

heterogeneity of execution nodes and tasks is taken 

into account in the heterogeneous execution times of 

each task on execution nodes. Similarly, the 

heterogeneity of network links and edges is implicitly 

considered through varying communication costs 

associated with the edges. Following numerous 

simulations, the most suitable parameters for the 

proposed algorithm are identified, yielding optimal 

results with crossover and mutation probabilities set 

at 0.8 and 0.02, respectively. To streamline the 

simulations, the population size and the number of 

generations are both set to 100. 

 

A complete list of abbreviations is summarized in 

Appendix I. 

 

6. Conclusion and recommendation 
The proposed e-HGA collected tasks and mapped 

them evenly to the VMs. The results contributed to 

research on task scheduling optimization by 

scheduling task operations to reduce cost, enable 

efficient resource allocation, and manage time. 

Summary this study examined cloud computing and 

its concepts and subsequently considered cloudlet 

characteristics using different lengths with a constant 

network environment and VMs with different MIPS. 

The proposed e-HGA was tested with an increasing 

number of VMs to observe its behavior. The process 

was repeated using an increasing number of 

cloudlets. Based on the results, it was concluded that 

the number of cloudlets increased simultaneously 

with the increased number of VMs. Overall, the e-

HGA performed better than the conventional HGA, 

and only seldom performed poorly in comparison to 

the conventional HGA. Therefore, it is recommended 

that further research be conducted in the area of 

makeSpan and cost of VM-scheduled task execution 

on cloud computer workflow schedulers using 

different HGAs to minimize cost and time in relation 

to the resources allocated for VM task execution. It is 

recommended that further research work should be 

carried out in the area of workflow scheduler using 

different types of GA to further optimize the 

workflow result in the area of efficiency and resource 

management. 
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Appendix I 
S. No. Abbreviation Description 

1 ACO Ant Colony Optimization 

2 ALO Ant Lion Optimizer  

3 CPR Constrained Pressure Residual 

4 CPU Central Processing Unit 

5 e-HGA Enhanced Hybrid Genetic  Algorithm 

6 EC2 Elastic Compute Cloud  

7 FSV Feature Selective Validation  

8 FPA Flower Pollination Algorithm 

9 G&PSO        Greedy particle Swarm Optimization 

10 GWO           Grey Wolf Optimization 

11 GA               Genetic Algorithm 

12 GA-ETI        Genetic Algorithm- Education and 
Technology Institute 

13 HEFT            Heterogeneous Earliest Finish Time 

14 HGA             Hybrid Genetic Algorithm 

15 HSCGS       Self-Improved Chimp Optimization 
Algorithm with Glow Swarm 

Optimization Algorithm 

16 IAAS            Infrastructure as a Service 

17 LB-ACO      Load-Balancing Ant Colony 
Optimization 

18 LIGO           Laser Interferometer Gravitational-

Wave Observatory 

19 MCP            Microsoft Certified Professional 

20 MI                Million Instructions 

21 MIPS           Million Instructions Per Seconds 

22 MPGA         Multi-Population Genetic Algorithm 

23 MLDO         Machine Learning-Based Downtime 

Optimization 

24 NP                Nondeterministic Polynomial 

25 NSGA-II      Non-dominated Sorting Genetic 

Algorithm II 

26 PAAS         Platform as a Service 

27 PACO         Pre-Allocation Ant Colony 
Optimization 
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28 PD               Protein Data 

29 PEFT          The Parameter-Efficient Fine-Tuning 

30 QOS           Quality of Service 

31 SA              Simulated Annealing 

32 SAAS          Software as a Service 

33 SAMPGA      Self-Adaptive Multi-Population 
Genetic Algorithm 

34 SCA      Sine Cosine Algorithm 

35 SIPHT          Stanford Information Prediction 

Heterogeneous Tools 

36 SLAs          Service Level Agreements 

37 SPEA     Strength Pareto Evolutionary 

Algorithm 

38 SWFs          Scientific Workflows 

39 VMs               Virtual Machines 

40 WMS         Workflow Management System 

41 WS             Workflow Scheduling 

 

 


