
International Journal of Advanced Technology and Engineering Exploration, Vol 11(111)

ISSN (Print): 2394-5443 ISSN (Online): 2394-7454

http://dx.doi.org/10.19101/IJATEE.2023.10102108

119

Workflow scheduler optimization using an enhanced hybrid genetic algorithm

Awolola Tejumola Busayo
1
, Zarina Mohamad

1*
, Nor Aida Mahiddin

2
 and Wan Nor Shuhadah Wan

Nik
1

Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, [UNISZA] Kuala Terengganu, Malaysia
1

East Coast Environmental Research Institute (ESERI), Universiti Sultan Zainal Abidin, [UNISZA] Kuala

Terengganu, Malaysia
2

Received: 12-August-2023; Revised: 11-February-2024; Accepted: 13-February-2024;

©2024 Awolola Tejumola Busayo et al. This is an open access article distributed under the Creative Commons Attribution (CC

BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

1.Introduction
To increase efficiency, an enhanced hybrid genetic

algorithm (e-HGA) for task scheduling is created by

integrating genetic algorithm (GA) with additional

optimization approaches. Task scheduling is a

difficult problem, especially in parallel and

distributed systems. A hybrid method allows the

strengths of many algorithms to complement one

another, resulting in superior results [1]. Task

scheduling in distributed computing environments is

a critical aspect that directly impacts the overall

performance and efficiency of the system. Efficient

task scheduling ensures that computational resources

are utilized optimally, leading to improved system

throughput; reduced completion times, and enhanced

overall system reliability. In this context, an e-HGA

can be a powerful tool for addressing the

complexities of task scheduling.

*Author for correspondence

This approach combines the strengths of GA with

other optimization techniques, making it well-suited

for the complex and dynamic nature of distributed

computing environments [2].

In recent times, there has been an unparalleled

advancement in cloud computing technology,

coinciding with the proliferation of complex and

interconnected data that form scientific workflows

(SWFs). This has significantly underscored the

importance of SWFs which has become a top priority

for both service providers, and customers [3].

Consequently, efforts have been directed towards

devising optimal strategies for assigning workflow

tasks to available computing resources [4]. Cloud

computing has emerged as a prominent research

domain, gaining recognition as the primary

distributed computing model. It offers on-demand,

scalable, and highly reliable resources, operating on a

subscription-based service model kin to utility

Research Article

Abstract
The effectiveness of genetic algorithms (GA) can be improved by adjusting genetic operators and integrating an efficient

heuristic. These enhancements are integrated into the suggested enhanced hybrid genetic algorithm (e-HGA). The e-HGA

begins with an initial population that includes a solution derived from a heuristic, which serves as a guiding point toward

achieving an optimal makespan solution. The proposed e-HGA was evaluated in this work for two degrees of fitness,

which qualified a chromosome and a gene to be preferred above their other counterpart in a data population. To preserve

population variety and avoid premature convergence, parents were randomly picked from the population and crossed over

(mated) to generate offspring that were then modified by introducing random geneLists. The conventional hybrid genetic

algorithm (HGA) and e-HGA required 9.95 s and 9.148 s, respectively, for task completion. Increasing the number of

cloudlets to 40, the conventional HGA and e-HGA took 10.674 s and 9.558 s, respectively. When 50 cloudlets were

assigned to 10 virtual machines (VMs) the conventional HGA completed the task in 11.01 s, while the e-HGA required

12.863 s. Subsequently, with 60 cloudlets on 10 VMs, the conventional HGA and e-HGA achieved task completion in

14.74 s and 14.242 s, respectively. For 70 cloudlets on 10 VMs, the conventional HGA and e-HGA required 15.38 s and

17.25 s, respectively. The results contributed to research on task scheduling optimization by scheduling task operations to

reduce cost, enable efficient resource allocation, and manage time.

Keywords
Genetic algorithm, Enhanced hybrid genetic algorithm, Hybrid genetic algorithm, Scheduling, Makespan, GeneLists.

Awolola Tejumola Busayo et al.

120

computing. These resources are utilized for executing

SWFs, which include notable examples like

Montage, CyberShake, Epigenomics, laser

interferometer gravitational-wave observatory

(LIGO), and Stanford Information prediction

heterogeneous tools (SIPHT). SWFs can be viewed

as specialized workflows designed for computational

processes involving intricate data flows and control

dependencies [5]. They automate the implementation

of these processes on suitable computing resources.

The current era is characterized by remarkable

advancements in cloud computing technology,

complemented by the increasing complexity of

SWFs; this has necessitated a strong emphasis on

efficient workflow scheduling (WS) benefiting both

providers and customers alike. Cloud computing has

emerged as a leading model for distributed

computing, offering flexible and reliable resources

for executing SWFs which play a pivotal role in

various domains such as Montage, CyberShake,

Epigenomics, LIGO, and SIPHT. To ensure the

successful execution of SWFs, it is crucial to utilize

available computing resources optimally. This

involves focusing on identifying the optimal method

for allocating workflow tasks among these resources,

a procedure referred to as WS. WS encompasses the

assignment and oversight of the execution of

interconnected tasks, all while considering

constraints on shared resources based on their

priorities [6]. The combinatorial nature of this

problem makes it known to be nondeterministic

polynomial (NP) complete [6], prompting researchers

to seek near-optimal solutions. In order to facilitate

the execution of workflows, it is essential to have

well-defined and effectively managed workflows.

This is where an efficient workflow management

system (WMS) comes into play. A WMS is

responsible for defining and organizing workflows in

a manner that allows for their subsequent execution.

By utilizing robust WMS, researchers can ensure that

workflows are efficiently managed and prepared for

execution. The basic cloud computing concept is to

isolate applications, hardware, and the operating

system. For example, if an operating system failure

or a virus attack occurs, virtualization technology can

migrate the application automatically to another

server instead of shutting down the whole system.

One physical server can host several virtual servers.

Furthermore, one cloud user can possess ≥ 1 virtual

instance for data storage or hosting on cloud servers.

Job scheduling maps jobs to the available task

resources in a cloud computing environment.

Scheduling involves mapping and managing the

execution of interdependent tasks on allocated

resources [7]. WS represents a widely studied

problem in computer science, characterized as a NP

hard challenge. Researchers have devoted substantial

effort to enhancing the performance of workflow

execution [8]. NP-hard problems are those that can be

transformed into different problems solvable in

polynomial time on a nondeterministic machine [8].

This category encompasses optimization problems

like the fractional knapsack and the traveling

salesman. The effectiveness of virtual machines’

(VMs) performance relies on factors such as

processor capabilities, memory capacity, and

processing architecture. While a VMs equipped with

high-performing processors and ample memory has

the potential to deliver superior results, these

resources must be judiciously managed to avoid

inefficiencies stemming from suboptimal workflow

structuring [9]. Consequently, the optimization of

WS becomes pivotal for allocating tasks within both

single and multiple VMs in cloud environments. The

primary objective of researchers has been to optimize

cloud WS systems in terms of both time and cost.

Numerous methodologies have been adopted to

tackle this multifaceted problem. This study centers

on refining the scheduling of workflows onto VM

aiming to achieve resource efficiency and

subsequently reduce infrastructure costs [10]. This

research is mainly aimed to allocate appropriate

resources to workflow tasks to enable the completion

of workflow task execution within the customer’s

stated deadline. An appropriate scheduling strategy

can substantially influence cloud computing

performance [11]. Scheduling aids resource

organization as specified by the user. Resources must

be formally allocated prior to scheduling for

application execution. The processor, memory, and

workflow processing architecture determine VMs

performance. Processing time and cost reduction are

major issues in tasks running on VMs. Makespan (the

maximum time one VM requires to complete all

assigned tasks or jobs) is an important cloud

computing issue. The GA represents a probabilistic

approach for conducting a comprehensive search

across possibilities, inspired by the principles of

natural biological evolution. GAs function by

manipulating a population of potential solutions

using the survival of the fittest principle aimed at

progressively improving the quality of

approximations to a solution. In each of the iteration

a fresh collection of approximations is generated by

picking individuals according to their degree of

suitability within the problem domain and then

combining them using operators inspired by

biological genetics. In this study, the research issue

International Journal of Advanced Technology and Engineering Exploration, Vol 11(111)

121

focused on how scheduled tasks can yield minimal

job completion times using a proposed e-HGA. Grid

computing and cloud computing resources offer

optimal solutions that can cater to user requirements,

providing scalability and flexibility for the

considered applications [12]. However, there are

distinct differences in task scheduling between cloud

computing and grid computing: (1) Resource sharing:

Cloud computing leverages advanced services by

utilizing resource sharing through virtualization

technologies and internet-based concepts [13]. This

enables real-time allocation, maximizing resource

utilization and enhancing the elasticity of cloud

services. Consequently, the scheduler in a cloud

workflow system must consider the virtualization

infrastructure, such as virtual services and VM to

effectively support computational processes. On a

contrasting note, grid computing relies on the

collective distribution of an extensive collection of

resources. Its main emphasis is on batch processing,

where resources become available as they are freed

up by other users. (2) Regarding the expense

associated with resource utilization: Cloud computing

offers a versatile cost structure that takes into account

the user's specific requirements, encompassing

options like pay-as-you-go and on-demand services.

This approach empowers users to be charged in

accordance with the resources they utilize, tailored to

their individual needs. In contrast, grid computing

follows a quota-based strategy to determine the

accumulated cost of requested services [14]. Grid

computing lacks the flexible costing mechanism

present in cloud computing. In summary, cloud

computing and grid computing differ in terms of

resource sharing and cost of resource usage. Cloud

computing emphasizes resource sharing through

virtualization to support real-time allocation and

scalability, while grid computing focuses on shared

resource clusters and follows a quota-based costing

strategy. To efficiently schedule and map workflow

tasks to the available resources within a cloud

environment, a workflow scheduler (referred to as a

"bridge" in Figure 1) is required.

Figure 1The architecture for executing scientific workflows in a cloud environment

Multi-objective optimization: WS often involves

multiple conflicting objectives, such as minimizing

execution time while minimizing costs. GA can

handle multi-objective optimization problems

effectively by finding trade-off solutions. Green

computing: Energy efficiency is a growing concern in

data centers and cloud computing. An e-HGA can

help optimize scheduling to reduce energy

consumption, contributing to environmentally

sustainable computing practices. Real-world

applications: WS optimization has applications in

various domains, including scientific research,

healthcare, finance, and logistics. Improving

scheduling algorithms can lead to advancements in

these fields. In summary, the motivation for

researching workflow scheduler optimization using

an e-HGA is driven by the need to address the

challenges posed by complex, large- scale workflow

environments and the potential benefits in terms of

resource utilization, cost savings, scalability, and

improved quality of service (QoS) across various

industries and applications. The primary objective of

researchers has been to optimize cloud WS systems

in terms of both time and cost. Numerous

methodologies have been adopted to tackle this

multifaceted problem. This study centers on refining

the scheduling of workflows onto VMs, aiming to

achieve resource efficiency and subsequently reduce

infrastructure costs.

WS is a NP hard problem that researchers are

studying to improve workflow execution

performance. NP-hard problems can be reduced to

different problems using polynomial time on

nondeterministic machines, such as optimization

problems or fractional knapsacks. VM performance is

Awolola Tejumola Busayo et al.

122

determined by processor, memory, and processing

architecture. Optimizing WS for task allocation in

single and multiple VM on the cloud is a major task

for researchers. This work focuses on scheduling

workflows to efficiently manage resources and

provide a less cost infrastructure. This research area

aims to address the challenges associated with

efficiently managing and scheduling tasks in

workflow environments, such as cloud computing,

data centers, scientific simulations, and

manufacturing processes. Below are some key

motivations for this research: Resource utilization:

Efficiently allocating and utilizing computing

resources is crucial to maximize the throughput and

minimize operational costs. An e-HGA can help find

optimal resource allocations for workflow tasks,

ensuring that resources are used effectively. Time

and cost savings: Workflow optimization can lead to

significant time and cost savings. By automating the

scheduling process and improving its accuracy,

organizations can reduce execution times and

operational expenses. QoS Many applications,

particularly in cloud computing and real-time

systems, require adherence to specific QoS

constraints. Optimizing WS ensures that these

constraints are met consistently.

The paper is organized as follows: Section 2 provides

a comprehensive review of the literature related to

the study of WS, WS objectives, and task scheduling

algorithms for optimizing workflow schedulers using

an e-HGA. Section 3 describes the methodology of

the study, details the proposed hybrid model, and

presents the experimental study conducted. The

results obtained from these experiments are analyzed

and compared with other models in Section 4.

Section 5 discusses the overall analysis of the results

and their impact. Finally, Section 6 concludes the

paper and discusses future research directions.

2.Literature review
2.1Workflow scheduling

Effective scheduling is vital for optimum workflow

execution on all execution platforms. Scheduling

enhances performance by capitalizing on workflow

parallelism content. Nevertheless, Amdahl’s law

states that sequential workflow limits the advantage

of parallelism. Processing scheduling stands as a

pivotal subject within cloud computing, focusing on

the efficient execution of processes while giving due

consideration to QoS prerequisites like time limits

and financial constraints. In scholarly works,

numerous state-of-the-art algorithms for scheduling

workflows are fundamental or research-oriented, in

the realm of cloud computing, have been formulated.

Cloud computing, a technological advancement,

furnishes expandable services to users by harnessing

remote centralized computers and the internet [15]. It

leverages a diverse range of distributed resources to

deliver various services, each with its own unique

QoS requirements [12]. Amazon elastic compute

cloud (EC2), GoGrid, Google App Engine, Microsoft

Azure, and Aneka are some of the most well-known

cloud computing systems. Public clouds, private

clouds, community clouds, hybrid clouds, and cloud

federations are the most common types of clouds

[16]. Public clouds are open to any user [17], while

private clouds are exclusively owned and accessed by

specific enterprises [16]. Community clouds are

shared among multiple organizations and can be

managed either by those entities or by external

service providers [16]. Hybrid clouds merge

resources from both public and private cloud sources

[18]. Moreover, the concept of multi-cloud

configurations [19, 20]; Has emerged to address

availability challenges by integrating separate cloud

environments. Cloud services are delivered through

software as a service (SaaS), platform as a service

(PaaS), and infrastructure as a service (IaaS)

providers [21]. SaaS providers lease corporate SaaS

of clients [22], PaaS suppliers provide web-based

access to development components [22], and IaaS

clouds offer fundamental cloud infrastructure

resources such as computation power, storage, and

networking [23]. Virtualization plays a pivotal role in

facilitating cloud computing by enabling multiple

VMs to coexist on a single physical computer [24].

Each VM simulates an independent computer system

and executes tasks assigned by users [25]. Through

VMs instantiation, users can deploy their applications

on resources with diverse performance and cost

characteristics. The management of VMs within each

physical machine or server is overseen by a software

layer referred to as the hypervisor or VMs monitor,

which enables the creation and isolated operation of

VMs. In the realm of cloud computing, WS presents

a significant challenge, aiming to map workflow

activities onto VMs while accounting for a variety of

functional and non-functional constraints [26].

Workflows are made up of interdependent activities

that are linked together by data or functional

requirements, and these relationships must be taken

into account when scheduling [27]. However, with

cloud computing, WS a computationally demanding

issue known as NP-hard optimization, making it

difficult to obtain an ideal timetable. The presence of

several VMs in a cloud, together with the

requirement to plan different user tasks while taking

International Journal of Advanced Technology and Engineering Exploration, Vol 11(111)

123

into account diverse objectives and variables, adds to

the complexity. The fundamental goal of WS

strategies is to reduce wait time by appropriately

distributing jobs to virtual resources [28, 29]. A

scheduling method, for example, may be designed to

satisfy service level agreements (SLAs), meet user-

specified dates, and adhere to cost limits [30]. When

making scheduling decisions, scheduling solutions

take into account elements such as resource usage,

load balancing, and the availability of cloud

resources and services [29].

2.2Workflow scheduling objectives

The key WS objective is to accomplish the expected

aim by allocating the fitting resources to execute

tasks. Currently, the shared WS objective schemes

include availability, economic principle, maximum

resource utilization, minimum makespan, load

balancing, security, and higher dynamic adaptability

in the environment of cloud computing. Scheduling

strategies are divided into a) probabilistic search, b)

heuristics, and c) hybrid approaches. Probabilistic

search is an extensive category of scheduling

algorithms that include GAs, simulated annealing

(SA) [31], and ant colony or swarm optimization.

Heuristics are a time-effective resolution for specific

problem space scenarios. The most common heuristic

is list-based scheduling, which produces a priority list

of tasks according to specific standards.

Subsequently, tasks are allocated to resources [32].

Scheduling, which involves allocating resources to

tasks, is a computational problem that is known to be

extremely challenging to solve efficiently. As a

result, it is typically addressed using heuristic

methods, which are approximate algorithms or

strategies that provide practical solutions but may not

guarantee an optimal solution. Hybrid approaches

combine strategies to augment algorithm

performance. For example, [33] hybridized GA with

SA, while Daoud and Kharma [34] hybridized

heuristics and GA. Furthermore, based on the

literature [35] combined ant colony and GA. WS is a

crucial concern in workflow execution management.

Scheduling plans and directs the implementation of

inter-dependent tasks based on distributed resources

[36]. Scheduling allocates appropriate resources to

workflow tasks to complete execution to fulfill users’

aims and objectives and functions. Appropriate

scheduling can substantially affect system

performance. The fundamental objective of WS is to

achieve the intended outcome by appropriately

allocating tasks to suitable resources for execution.

Presently, widely recognized aims for WS strategies

encompass economic considerations, availability,

minimized time requirements, optimized resource

utilization, security, load distribution, and enhanced

dynamic adaptability within the context of cloud

computing [19], among various others. The

scheduling objectives under scrutiny in this

investigation are illustrated in Figure 2.

Figure 2 Schematic diagram of workflow scheduling objectives

Load balancing
Workflow scheduling

objectives

Cost

Budget

Minimization

Make span

Deadline

Minimization

Reliability awareness

Security awareness

Supporting service level

agreements (SLA)

Energy consumption

minimization

Awolola Tejumola Busayo et al.

124

 Cost: The distributed computing nodes within

the cloud cluster could be geographically

dispersed, necessitating equitable administrative

expenses for the cloud client towards the cloud

provider. The overall expenditure linked with the

execution of processes in the cloud encompasses

various cost elements, including but not limited

to computational expenses and expenses related

to data transmission. These specific cost factors

will be explored in greater detail in the

subsequent sections. The management of process

execution costs has emerged as a significant

objective within the realm of cloud WS

investigations [37].

 Makespan: The timeframe allocated for the

execution of a workflow primarily hinges on the

combined execution durations of individual tasks

and the associated communication expenses

between them. In simpler terms, it denotes the

span commencing with the initiation of the initial

task and concluding with the finalization of the

last task. Ever since the inception of cloud

computing, attaining the prescribed deadline for

a workflow has remained a predominant

objective across various scheduling

methodologies.

 In the realm of cloud computing, particularly for

extensive data processing tasks, maintaining

balanced work distribution holds significant

significance. A WS approach must encompass

the equitable distribution of workloads across

diverse nodes within a geographically dispersed

and varied environment, characteristic of the

cloud. This strategic optimization contributes to

enhancing resource utilization efficiency while

mitigating the risk of overwhelming any specific

resource.

 Reliability awareness: Reliability

consciousness stands as another crucial

prerequisite in the domain of process scheduling.

Beyond time and cost considerations, the

trustworthiness of workflow execution is taken

into account. This aspect signifies the probability

of accomplishing a task successfully while

adhering to the user's predefined QoS

constraints, even in scenarios involving failures

of resources or tasks. To enhance this reliability,

scheduling algorithms can employ strategies like

active replication and backup/restart

mechanisms. Nonetheless, these algorithms must

diligently evaluate the expenses incurred due to

task reiteration, encompassing factors such as

time and computational resources

squandered[38].

 The pursuit of diminishing energy consumption

is rapidly gaining prominence within the realm

of cloud computing. With the escalation in

demand for cloud services, data centers are

consuming significant amounts of energy,

underscoring the imperative for enhanced energy

efficiency. Cloud service providers are facing

mounting pressure to curtail their energy

consumption rates. To address this challenge,

contemporary algorithms have been devised to

navigate the intricacies of harmonizing energy

consumption, performance, and expenses.

Nonetheless, it's crucial to acknowledge that

energy optimization has yet to attain relevance at

the VMs abstraction level. In summary, when

orchestrating workflows within the context of

cloud computing, factors such as load balancing,

awareness of dependability, and reduction in

energy usage assume heightened significance.

These objectives are aligned to optimize the

utilization of resources, ensure reliability, and

subsequently minimize energy consumption,

prioritized in that sequence.

WS is one of the happening research topic in cloud

computing. Simulation based approach has become

well liked technology to evaluate cloud computing

systems, their security and performance and

application behaviour’s. Several simulators have

been particularly developed for evaluation and

performance analysis of cloud environments.

2.3Task scheduling algorithms

In the work of Zhong et al. [39] a scheduling

approach known as greedy particle swarm

optimization (G&PSO) was introduced. The

outcomes demonstrated enhancements in various

aspects of each VM performance, encompassing both

global and local search capabilities. Additionally, the

method exhibited accelerated convergence rates and

contributed to a more consistent distribution of

workloads. In the study conducted by Wei et al. [40]

a multi-population genetic algorithm (MPGA) was

explored for load balancing, aimed at mitigating

premature convergence of tasks within cloud

systems. The findings illustrated that the MPGA

exhibited strong performance in terms of job

scheduling, leading to reductions in execution time

and associated costs. Lin and Li [41] devised an

approach for scheduling tasks within cloud systems

utilizing a pre-allocation ant colony optimization

(PACO) framework. The proposed technique

demonstrated strong efficiency. According to [42]

which introduced a three-stage selection process

International Journal of Advanced Technology and Engineering Exploration, Vol 11(111)

125

along with a genetic strategy termed "total-division-

total" to complement their genetic approach [42].

Utilizing the CloudSim tool, the outcomes indicated

that the enhanced algorithm outperformed a basic GA

concerning the duration of task completion. This

highlighted the reliability of the improved GA as a

viable approach for scheduling jobs within cloud

computing. Gupta et al. [43] introduced a meta-

heuristic adaptation of the ant colony optimization

(ACO) algorithm for the scheduling of tasks within

cloud systems, with a focus on two primary

objectives. The results demonstrated that the

suggested load-balancing ant colony optimization

(LB-ACO), when compared to the non-dominated

sorting GA II, non-dominated sorting genetic

algorithm (NSGA-II), exhibited superior performance

in terms of load distribution equilibrium and

makespan reduction. NSGA-II is an evolutionary

optimization method that efficiently categorizes

individuals based on their non-dominated solutions to

effectively address multi-objective optimization

problems. In response to scheduling challenges, Wei

et al. introduced a scheduling approach termed self-

adaptive multi-population genetic algorithm

(SAMPGA) [44]. The simulations revealed favorable

outcomes, indicating that SAMPGA yielded positive

results in relation to cost efficiency, job completion

duration, and load balancing.

3.Methodology

In this study, the proposed e-HGA tested two levels

of fitness, which qualified a chromosome and a gene

to be preferred to their other counterpart in a data

population. At the chromosome level, parents were

randomly selected from the population and crossed

over (mated) to produce offspring that were

subsequently mutated by inserting random geneLists

to maintain population diversity to avoid premature

convergence. The fittest chromosome underwent a

second round of native hybrid genetic algorithm

(HGA), where two parents (geneList) were selected

from the fittest chromosome to mate (crossover).

Subsequently, the crossover site geneLists were

exchanged, thus producing an entirely new individual

(offspring). Following this, the offspring were

mutated by inserting random genes to maintain

population diversity to avoid premature convergence.

This experiment was performed with the same data

using a conventional HGA. The results were

compared to determine whether the proposed e-HGA

or conventional HGA performed better.

Chromosome level: The term chromosome is used to

symbolize the answer, which is an integer string

made up of a series of substrings [1]. Each substring

represents a list of nodes that a bus has visited. For

example, the chromosomal coding for a solution with

two routes and five pick-up and drop-off stop pairs

(Protein Data (PD) pirs) is as follows: 0-2
+
-4

+
-2

−
-4

−
-

0-1
+
-1

−
-3

+
-5

+
-5

−
-3

−
-0, where 1

+
, 2

+
, 3

+
, 4

+
, and

5
+
 represent pick-up stops, while 1

−
, 2

−
, 3

−
, 4

−
, and

5
−
 represent drop-off stops. 0 represents a terminal,

which divides the chromosome into multiple routes.

The start and finish terminals are determined by the

closeness of the nearest terminals to the first and last

stops, respectively. In this investigation, the

chromosome is created at random.

Hybrid genetic algorithm (e-HGA): The

exploration of a stochastic GA is combined with the

accurate convergence of a deterministic method in an

e-HGA. The new aspect is the way these algorithms

are coupled. e-HGA includes all the processes of a

traditional GA (e.g., selection, mating, mutating,

elitism), but after the mutation procedure, each

candidate is optimized locally, as shown in the

algorithm flowchart. The combination of these two

techniques results in an aggressive optimization

process capable of searching the whole variable space

while also converging on the precise local optimum

for each candidate. In a hybrid GA, natural selection

regulates the placement of new candidates, with the

best candidate more likely to be put. The ability to

obtain global optimum values that normal stochastic

algorithms cannot detect is the key advantage.

Elitism: Defines the highest proportion of p

Crossover: This represents exchange of genes. Two

chromosomes are selected using a selection operator

and crossover sites are chosen randomly. Then the

genes at these crossover sites are exchanged thus

creating a completely new individual (offspring). For

the GA. VMs crossed over for this process.

Mutation: Mutation is a process inserting random

genes in offspring to maintain the diversity in the

population to avoid premature convergence.

3.1Proposed model

The HGA comprises two levels of architecture for

task scheduling with enhanced selection (elitism).

The main structure contains all key e-HGA

components with a few modifications. The e-HGA

calculates fitness based on the size of jobs in million

instructions (MI) and the computational power of

VMs in MI per second (MIPS) [45]. Figure 3 depicts

the proposed e-HGA model, which is a slight

modification of the conventional e-HGA process

model. The diagram contains two sections, which

represent the e-HGA levels combined to create the e-

e-HGA. The model began with level 1 population-

level e-HGA. Parent initialization sorted the

Awolola Tejumola Busayo et al.

126

population to select the top 10 chromosomes to

enable crossover (mating) between two parents from

the population. Successively, fitness evaluation

examined the level of fitness of each chromosome to

select the best chromosome. Subsequently, geneList

crossover was conducted to create offspring,

followed by mutation. Level 2 chromosome-level e-

HGA involved parent initialization to sort the

population and select the top 10 geneLists to identify

two parents from the best-fit chromosome selected in

level 1 HGA. Subsequently, fitness evaluation

examined the level of fitness of each geneList to

select the best geneList. The next stage was the

crossover, where Generalists within the parent

chromosomes were exchanged to create a completely

new geneList (offspring), while the mutation stage

involved inserting random geneLists in the offspring

to maintain population diversity to avoid premature

convergence [46]. The fittest geneLists were selected

from the best chromosomes with the fitness function.

The improvement introduced by the proposed e-HGA

model was described as follows: elitism (selection of

the top 10% fittest individuals) was used to calculate

individuals’ fitness at each level before the best fit

was selected for mating [1].

Figure 3 Proposed HGA model

The first-stage population-level e-HGA involved

fitness, crossover, mutation, and repeat fitness until

convergence. This stage was essential to firsthand

fine-tune the geneLists. The subsequent stage was

chromosome-level HGA, where the e-HGA processes

were repeated. At the crossover stage of both levels,

individual exchanges were conducted to create a

wholly new individual (offspring) that would proceed

to the mutation stage [47]. The new genes inserted

during the mutation would be inherited at the next

stage (new population). At the decision stage, if the

decision outcome was negative, the process was

iterated back to the fitness evaluation stage, from

which the entire process was repeated until a positive

outcome was achieved. Nonetheless, if the decision

outcome was positive, the process would proceed to

the chromosome fitness evaluation level, where each

chromosome was evaluated for best fitness. The

process was terminated once the chromosome with

the best fitness was found.

The objective function is used to provide a measure

of how individuals have performed in the problem

domain. In the case of a minimization problem, the fit

individuals will have the lowest numerical value of

the associated objective function. This raw measure

Fit Chromosome/List of GeneList

Level 1

Chromosome 1 Chromosome 2 Chromosome N

Cross Over

Parent 1 Parent 2

Fit Chromosome

Chromosome

Mutation

Fit GeneList

Level 2

GeneList 1 GeneList 2 GeneList N

Cross Over

Parent 1 Parent 2

Fit GeneList

Chromosome

Parent 1

International Journal of Advanced Technology and Engineering Exploration, Vol 11(111)

127

of fitness is usually only used as an intermediate

stage in determining the relative performance of

individuals in a e-HGA. Another function, the fitness

function, is normally used to transform the objective

function value into a measure of relative fitness,

where f is the objective function, g transforms the

value of the objective function to a non-negative

number and F is the resulting relative fitness. This

mapping is always necessary when the objective

function is to be minimized as the lower objective

function values correspond to fitter individuals. In

many cases, the fitness function value corresponds to

the number of offspring that an individual can expect

to produce in the next generation. A commonly used

transformation is that of proportional fitness

assignment (see, for example, [1]). The individual

fitness, F(xi), of each individual is computed as the

individual’s raw performance, f(xi), relative to the

whole population, i.e. (Equation 1),

F(xi) = F(xi) / ∑

 (1)

Where Nind is the population size and xi is the

phenotypic value of individual i. whilst this fitness

assignment ensures that each individual has a

probability of reproducing according to its relative

fitness, it fails to account for negative objective

function values.

A linear transformation which offsets the objective

function [1] is often used prior to fitness assignment,

such that, where a positive scaling factor if the

optimization is maximizing and negative if we are

minimizing. The offset b is used to ensure that the

resulting fitness values are non-negative.
3.1.1A step-by-step description of the e-HGA

algorithm's workflow

The architecture of e-HGA enhances HGA for task

scheduling at two levels with enhanced selection

process (Elitism). The main structure has all major

components of e-HGA with a few modifications. e-

HGA requires size of jobs in MI and computational

power of VMs in MIPS to calculate fitness. The

model starts with level 1 HGA at the population

level. Initialization of parents which sorts the

population to selects the top 10 Chromosomes to

make two parents from the population to mate (Cross

Over). The next stage is the evaluation of fitness

which examine the fitness level of each Chromosome

to select the best Chromosome to be used in the

process, the next stage is the crossover which

exchanges geneList within the parent Chromosomes

to create a completely new Chromosome that can be

called an offspring while the mutation stage inserts

random geneList in offspring to maintain the

diversity in the population to avoid premature

convergence.

Level 2 e-HGA at the Chromosome level involves

initialization of parents which sorts the population to

select the top 10 geneList to make two parents from

the best fit Chromosome selected in level 1 e-HGA.

The next stage is the evaluation of fitness which

examine the fitness level of each geneList to select a

best geneList to be used in the process, the next stage

is the crossover which exchanges geneList within the

parent Chromosomes to create a completely new

geneList that can be called an offspring while the

mutation stage inserts random geneList in offspring

to maintain the diversity in the population to avoid

premature convergence. The fitness function is

further used to pick the fittest GeneList from the best

Chromosomes. These levels of e-HGA are

demonstrated in Figure 4.

The following operation explains the improvement

introduced by HGA model.

1. Using Elitism which is the selection of the top 10

percent fit individuals to calculate fitness of

individual at each level before picking the best fit

for mating (cross over).

2. Do the native HGA at two levels. Make decisions

on population using native e-HGA methods

fitness, crossover and mutation.

Figure 4 represents the proposed e-HGA process

model which is a slight modification of the

conventional HGA process model. The diagram is

sectioned into two levels, which represent the

different levels of HGA combined to create the e-

HGA. The first stage is HGA at population level. At

this level, the process of HGA is done which is

fitness, cross over, and mutation and repeat Fitness

until convergence. This stage is essential to firsthand

fine-tune geneLists which are children of a

Chromosome. The next stage is HGA at chromosome

level. At this level, the process of HGA is repeated

which is fitness, cross over, and mutation and repeat

Fitness until convergence. At the stage of crossover

in both levels, an exchange of individuals is done to

create a completely new individual that can be called

an offspring that will be passed on to the next

mutation stage. The mutation process inserts random

genes in individuals to maintain the diversity in the

population so as to avoid premature convergence.

The new genes are now passed on to the next stage

called new population. At the decision stage of the

process, if the outcome of the decision is negative the

process iterates back to the evaluation of fitness stage

Awolola Tejumola Busayo et al.

128

and from there the whole process is repeated until the

outcome is positive. But on the other hand, if the

decision outcome is positive then the process

proceeds to the evaluation of fitness of chromosome

level, at this stage each chromosome is evaluated for

best fitness and once the chromosome with the best

fitness is found the process terminates.

Figure 4Proposed e-HGA Model

Figure 5 shows the overall pseudo code for e-HGA.

Line 1 sorts of the unsorted list of VMs and places it

in a place holder called vmList, line 2 also sort the

unsorted cloudlets and place it a place holder called

cloudletList, line 3 randomizes the number of

cloudlets form 0 with the number of VMs and place

them in a place holder called population. Line 4

performs a doCrossOver iteration and a do Mutation

iteration on the cloudlets placed in the population

placeholder until a BestFitness is found, line 5 closes

the iteration, line 6 initializes the best population to

become the modified population, line 7 performs a

loop were best Chromosomes in the population

equals to fittest chromosomes found in the best

population of chromosomes, line 8 close the whole

algorithm. Figure 6 shows a (while) iteration

operations performed to find the best population, line

1 initializes foundBestFit to be false, line 2 Initializes

previous fittest to be minimum Integer, line 3

initializes fitness to equal 0. Line 4 performs a while

loop operation were found best fit is not false as basic

parameter, at the end of the (while) operation, the last

line of the general code returns a best population.

vmList ← Sort (unsortedVmList)

cloutletList ←Sort (unsortedCloudletlist)

population ← Random (from 0 until Number of

Cloudlets ×Number of VMs)

Until (bestFitness) { // Iteration Algorithm

 doCrossOver (population)

doMutation (population)

}

bestPopulation = modified population

for (each Chromosome in bestPopulation) {

 bestChromosome = findFitestChromosome ()

}
Figure 5 Illustration of e-HGA unsorted list of VM

 Mutation

Level 1

Chromosome Chromosome
.

Chromosome

Cross Over

Parent 1 Parent 2

Fit Chromosome

Chromosome

GeneList GeneList
.

GeneList

Cross Over

Parent 1 Parent 2

 Fit GeneList

 Mutation

Level 2

Fit Chromosome/List of GeneList

Fit GeneList

International Journal of Advanced Technology and Engineering Exploration, Vol 11(111)

129

foundBestFit = false

 previousFitest = MinimumInteger

 fitness = 0

while (foundBestFit == false) {

tempFitValue = 0

for i ←0 to populationSize{

 fit = fitnessFunction

 tempFitValue += fit

}

fitness = tempFitValue

 if fitness < previousFitest:

 foundBestFit = true

 if foundBestFit{

return bestPopulation

end while Loop

}

previousFitest = fitness

doCrossOver:

doMutation ()

}

return bestPopulation

Figure 6 Iteration operations performed

Figure 7 shows the cross over iteration on the

population size of chromosomes. Line 1 assigns all

the results of the operation performed on the

population size to (i) in the four loops. Line 2

randomizes index number 1 in the loop and assigns it

to variable x. Line 3 randomizes index number 2 in

the loop and assigns it to variable y, line 4

getGeneList is multiplied with variable x and is

initialized to 1. Line 5 getGeneList is multiplied with

variable y and is initialized to 2, line 6 randomize

new index number 1 in the loop and assigns it to

variable I, line 7 randomize new index number 2 in

the loop and assigns it to variable j. Line 8 gets VM

from list 1 and in variable i and assigns it to Vm1,

line 9 gets VM from list 1 and in variable j and

assigns it to Vm2. Line 10 updates the chromosome

gene with Vm1 at variable I, line 11 updates the

chromosome gene with Vm2 at variable j. Figure 8

shows the mutation probability iteration done on the

chromosome population. Line 1 randomizes an empty

parameter and assigns it to mutation probability

(mutProb). Line 2 performs if conditions were the

below lines are executed if the mutProb is less than

0.5. Line 3 initializes a random to randomNumber,

line 4 gets the GeneList and random Number and

merges it with the population and all is assigned to

mutGeneList. Line 5 assigns mutGeneList of the

Chromosomes to mutChromosome, line 6

randomizes an empty parameter and assigns it to

randomIndex. Line 7 randomizes an empty

parameter and assigns it to randomIndex2, line 8 gets

the randomIndex1 and inculcates it with VmList and

assigns them to mutVM. Line 9 updates mutVM in

random Index 2, and inculcates them with

mutChromosome, Line 10 sets population

randomNumber. Line 11 closes the entire

conditional if statement.

for i ← populationSize {

x = randomlndex1

 y = random Index2

 I1 ← getGeneList (x)

I2 ← getGeneList (y)

 i = randomlndex1

 j = randomIndex2

 Vm1← getVmFromLl (i)

Vm2 ← getVmFromL1 (j)

chromosome.updateGene(with Vml at i)

 chromosome.updateGene(with Vm2 at j)

}

Figure 7 Shows the cross over iteration on the

population size of chromosomes

mutProb = Random ()

if mutProb < 0.5{

 randomNumber = Random ()

 mutGeneList =

population.get(randomNumber).getGenelist()

 mutChromosome = Chromosome (mutGeneList)

randomlndex1 = Random ()

 randomIndex2 = Random ()

 mutVM = VmList.get (randomlndex1)

 mutChromosome.update (mutVM at randomIndex2)

population.set (randomNumber)

}

Figure 8 Shows the mutation probability iteration

done on the chromosome population

Figure 9 shows the code for finding the fittest

chromosomes in the population of chromosomes.

Line 1 is an if statement condition were the

population size is assigned to variable i. Line 2 gets

the list of gene at I and assigned the list to GeneList.

Line 3 calculates the fitness of the GeneList, Line 4

closes the if statement. Lines 5 get the fittest geneList

and add it up to the population and the result is said

to be the bestChromosome.

for i ←populationSize{

GeneList ← population.getList (gene at i)

calculateFitness ()

} bestChromosome ←population.get (fittest geneList)

Figure 9 The Code fittest chromosomes in the

population of chromosomes

Awolola Tejumola Busayo et al.

130

3.2Simulation tool

The project data was simulated with the Eclipse tool.

Eclipse simulates data more rapidly without

compromising results and requiring hardware

upgrades. An improved constrained pressure residual

(CPR) solver enables additional residual checks for

marked performance improvements, specifically

when repeated non-linear convergence issues occur.

Eclipse simulates faster without compromising

results and without upgrading your hardware.

Improved CPR solver enables you to provide addition

residual checks, for dramatic improvements in

performance, especially when there are repeated non-

linear convergence problems.

3.3Test environment

CloudSim comprises a simulation engine, cloud

services, and source code, positioning itself as an

extensible provisioning environment. Its layered

construction mirrors the hierarchical nature of cloud

computing environments. Given the rapidly evolving

nature of cloud computing as a research area, there

exists a shortage of well-defined standards, tools, and

methods capable of effectively addressing the

complexities at both the infrastructure and

application levels. Figure 10 illustrates the layered

structure of the CloudSim software framework and its

architectural components. The bottom layer features

the SimJava discrete event simulation engine [48],

which serves as the foundation by implementing

essential functionalities for higher-level simulation

frameworks. These functionalities encompass event

queuing and processing, the creation of system

components (services, host, data center, broker, and

VM component communication, and simulation

clock management. Moving up the layers, the next

tier consists of libraries that implement the GridSim

toolkit [49]. This toolkit provides support for high-

level software components that model various Grid

infrastructures, including networks and associated

traffic profiles. Additionally, it includes fundamental

Grid components such as resources, data sets,

workload traces, and information services. The

CloudSim layer is situated above the GridSim layer

and is implemented by programmatically extending

the core functionalities offered by GridSim.

CloudSim introduces innovative support for

modeling and simulating virtualized Cloud-based

data center environments, featuring dedicated

management interfaces for VMs, memory, storage,

and bandwidth.

Figure 10 The layered structure of the CloudSim software framework and its architectural components

Cloud Services

Cloud Resources

Network

CloudSim User

Interface

Structure VM Services

Cloudlet

Virtual Machine

Cloudlet

Execution

VM

Management

VM

Provisioning

CPU

Allocation

Memory

Allocation

Storage

Allocation

Bandwidth

Allocation

Event

Handling

Sensor

Cloud

Coordinator

Data Center

Network Topology

Message delay

Calculation

CloudSim Core Simulation Engine

User Code

Simulation

Specification

Scheduling Policy

Cloud Scenario

User

Requirements

. . . Application

Configuration

User Data Center Broker

International Journal of Advanced Technology and Engineering Exploration, Vol 11(111)

131

In this layer, cloudSim is responsible for managing

the instantiation and execution of core entities such

as VMs, hosts, data centers, and applications

throughout the simulation period. It possesses the

capability to concurrently instantiate and seamlessly

manage a large-scale cloud infrastructure comprising

thousands of system components. Essential tasks like

provisioning hosts to VMs based on user requests,

managing application execution, and dynamic

monitoring are efficiently handled by the cloudSim

layer. For a cloud provider seeking to investigate the

effectiveness of different policies in host allocation,

strategic implementations need to be incorporated at

this layer by programmatically extending the core

VM provisioning functionality. A notable distinction

at this layer is the methodology employed in

allocating a host to various competing VMs in the

cloud. A cloud host can be concurrently shared

among multiple VMs executing applications based on

user defined QoS specifications. The proposed e-

HGA step by step is presented below:

Step 1: e-HGA at initialization level.

Initialize and assign cloudLets to VM.

Input: CLoudletList, VmList

averageNumber = cloudletsSize / VmSize;

int rem = cloudletsSize % VmSize

 int noVms = vmlistSize;

 // Assign Cloudlets to VM

 population = new List();

 fittnessList = new ArrayList ();

 for(int x = 0; x < 100; x++) {

 chromosome = new List();

 for(int j = 0; j < 20; j++) {

 Shuffle(vmlist);

 Shuffle(Cloudletslist);

 oldPosition = 0;

 genelist = new List<>();

 for(int i = 0; i < noVms; i++) {

 if(i == noVms - 1 && rem != 0) { // Assigning the

remaining Cloudlets to Vm if any exist.

geneLast = new Gene2(cloudletList[oldPosition:

cloudletListSize], vmlist[i]);

genelist.add(geneLast);

break;

}

clts = cloudletList[oldPosition : (i + 1)×aveCls];

gene = new Gene2(clts, vmlist[i]);

oldPosition = (i + 1) × averageNumber;

 if(i < noVms) {

 genelist.add(gene);

}

}

chromosome.add(genelist);

}

population.add(chromosome);

}

Step 2: e-HGA at Population Level.

Input: CLoudletList, VmList, Population

converged = false;

convValues = new List();

convValues.add(average(fitnessPopulation(populatio

n)));

best = population //From initialization

while(converged == false) {

srt = sortPopulation(population);

 newGeneration = new List ();

// ELITISM: 10% of the best

newGeneration = srt[0, (10 × srt.size/100)];

parent1 = new List();

parent2 = new List();

//CROSS_OVER or MUTATION

parent1.addAll(srt[0, srt.size]);

parent2.addAll(srt[0, srt.size]);

p = mate(parent1, parent2, cloudletList, vmlist);

 newGeneration.addAll(p);

population = newGeneration;

avg = average(fitnessPopulation(population));

miniValue = Collections.min(convValues)

if(avg < miniValue) {

best = newGeneration;

}

sort(convValues);

if(convValues.size > 500 || avg < min(convValues))

{

converged = true;

}

if(convValues.size() > 500) {

converged = true;

}

convValues.add(avg);

}

bestChromosome = pickBestChromosome(best);

Step 3: e-HGA at chromosome level.

Input: CLoudletList, VmList, bestChromosome.

bestGeneList = population[0]; // INITIALISED

bestGeneList from one chromosome, the value will

be reassigned

converged = false;

while(converged == false) {

 srt = sortChromosome(bestChromosome);

newGeneration = new List();

// ELITISM: 10% of the best

newGeneration = srt[0, (10 × srt.size/100)];

parent1 = new List();

parent2 = new List();

//CROSS_OVER or MUTATION

Awolola Tejumola Busayo et al.

132

parent1.addAll(srt[0, srt.size]);

parent2.addAll(srt[0, srt.size]);

p = mateChromosomes(parent1, parent2,

cloudletList, vmlist);

newGeneration.addAll(p);

avg = fitnessChromosome(newGeneration);

minimum = Collections.min(convValues)

if(avg < minimum) {

bestGeneList = newGeneration;

}

sort(convValues);

minimum = Collections.min(convValues)

if(convValues.size() > 500 || avg < minimum {

converged = true;

}

if(convValues.size() > 500) {

converged = true;

}

convValues.add(avg);

}

Step 4: Final assignment and running cloudsim

Input: CLoudletList, VmList, bestGeneList.

bestGeneListList = pickBestGenelist(bestGeneList);

clts = new List();

for(Gene2 gene: bestGeneListList) {

for(i = 0; i < gene.getCloudletsFromGene().size();

i++) {

clt = gene.getCloudletsFromGene().get(i);

clts.add(clt);

clt.setUserId(brokerId);

clt.setVmId(gene.getVmFromGene().getId());

}

}

broker.submitCloudletList(clts);

broker.submitVmList(vmlist);

Fitness Population

Input: Population.

function fitnessPopulation {

fitness = 0;

fitnessList = new List();

for(List<Gene2> chromo : population) {

fitness = fitnessChromosome(chromo);

fitnessList.add(fitness);

}

return fitnessList;

}

Fitness Chromosome

function fitnessChromosome(List<List<Gene2>>

chromo) {

fitness = 0;

for (List<Gene2> cr1: chromo) {

for (Gene2 gene: cr1) {

 fitness += fitnessGene(gene);

}

}

return fitness;

}

Fitness Gene

function fitnessGene(Gene2 gene) {

int fitness = 0;

Vm vm = gene.getVmFromGene();

List<Cloudlet> clt = gene.getCloudletsFromGene();

for (Cloudlet ct: clt) {

fitness += ct.getCloudletLength() / vm.getMips();

}

return fitness;

}

PickBestGeneList function:

function pickBestGenelist(List<List<Gene2>>

chromosome){

best= new List();

bestValue = Integer.MAX_VALUE;

for(int i = 0; i< chromosome.size; i++)

{

int fitValue =

fitnessChromosome2(chromosome.get(i));

if(fitValue < bestValue)

{

best = chromosome.get(i);

bestValue =

fitnessChromosome2(chromosome.get(i));

}

}

return best;

}

Mate function:

Input:

static mate(List<List<List<Gene2>>> parent1,

List<List<List<Gene2>>> parent2, sortedList,

List<Vm> sortedListVm){

children = new List();

for(int x = 0; x < (90 × parent1.size/100); x++) {

Random rand = new Random();

Double randNum = rand.nextDouble(1);

if(randNum < 0.45) {

children.add(parent1.get(x));

} else if(randNum <= 1.0) {

 children.add(parent2.get(x));

}

}

return children;

}

Mate Chromosomes:

static mateChromosomes(List<List<Gene2>>

parent1, List<List<Gene2>> parent2, List<Cloudlet>

sortedList, List<Vm> sortedListVm){

 = new List();

for(int x = 0; x < (90 × parent1.size()/100); x++) {

International Journal of Advanced Technology and Engineering Exploration, Vol 11(111)

133

Random rand = new Random();

Double randNum = rand.nextDouble(1);

if(randNum < 0.45) {

 children.add(parent1.get(x));

} else if(randNum <= 1.0) {

 children.add(parent2.get(x));

}

}

return children;

}

Fitness Chromosome 2

static int fitnessChromosome2(List<Gene2> chromo)

{

 int fitness = 0;

for (Gene2 geneList: chromo) {

fitness += fitnessGene(geneList);

}

return fitness;

}

// Explanation of HGA Mechanism

e-HGA at Population Level.

Input: CLoudletList, VmList, Population

converged = false;

convValues = new List();

 convValues.add(average(fitnessPopulation(p

opulation)));

best = population //From initialization

while(converged == false) {

srt = sortPopulation(population); // Sorts population

according to Cloudlet length / MIPS

newGeneration = new List();

// ELITISM: 10% of the best

newGeneration = srt[0, (10 × srt.size/100)]; //Pick the

Top 10% Best

parent1 = new List(); // Initialize one parent

parent2 = new List(); // Initialize another parent

//CROSS_OVER or MUTATION

parent1.addAll(srt[0, srt.size]); // Adds all Top 10%

Best to one parent

parent2.addAll(srt[0, srt.size]); // Adds all Top 10%

Best to another parent

p = mate(parent1, parent2, cloudletList, vmlist); //

Mate parents, mutation and cross over randomly.

newGeneration.addAll(p); // Adds all to a

allGeneration.

population = newGeneration;

avg = average(fitnessPopulation(population)); //

Calculate the average of all population fitness.

miniValue = Collections.min(convValues) // Finds

the minimum of averages to determine convergence.

if(avg < miniValue) { // Determines convergence.

best = newGeneration; // If converged, save the best

}

sort(convValues); // Sort the average values to be

used in the loop.

if(convValues.size > 500 || avg < min(convValues))

{ // Terminate loop if not converged at 500 iteration

converged = true;

}

if(convValues.size() > 500) {// Terminate loop if not

converged at 500 iteration

converged = true;

}

convValues.add(avg); //Adds average value to be

tested for convergence.

}

bestChromosome = pickBestChromosome(best); //

Pick best chromosome.

e-HGA at Chromosome Level.

Input: CLoudletList, VmList, bestChromosome.

bestGeneList = population[0]; // INITIALISED

bestGeneList from one chromosome, the value will

be reassigned

converged = false;

while(converged == false) {

srt = sortChromosome(bestChromosome); // Sorts

population according to Cloudlet length / MIPS

newGeneration = new List();

// ELITISM: 10% of the best

newGeneration = srt[0, (10 × srt.size/100)]; //Pick the

Top 10% Best

parent1 = new List(); // Initialize one parent

parent2 = new List(); // Initialize another parent

//CROSS_OVER or MUTATION

parent1.addAll(srt[0, srt.size]); // Adds all Top 10%

Best to one parent

parent2.addAll(srt[0, srt.size]); // Adds all Top 10%

Best to another parent

p = mateChromosomes(parent1, parent2,

cloudletList, vmlist); // Mate parents, mutation and

cross over randomly.

newGeneration.addAll(p); // Adds all to a

allGeneration.

avg = fitnessChromosome(newGeneration); //

Calculate the fittest chromosome.

minimum = Collections.min(convValues) // Finds the

minimum of averages to determine convergence.

if(avg < minimum) { // Determines convergence.

bestGeneList = newGeneration; // If converged, save

the bestGeneList

}

sort(convValues); // Sort the average values to be

used in the loop.

minimum = Collections.min(convValues)

if(convValues.size() > 500 || avg < minimum { //

Terminate loop if not converged at 500 iteration

converged = true;

Awolola Tejumola Busayo et al.

134

}

if(convValues.size() > 500) {// Terminate loop if not

converged at 500 iteration

converged = true;

}

convValues.add(avg); //Adds average value to be

tested for convergence.

}

Final assignment and running Cloudsim

Input: CLoudletList, VmList, bestGeneList.

bestGeneListList = pickBestGenelist(bestGeneList);

clts = new List();

for(Gene2 gene: bestGeneListList) {

for(i = 0; i < gene.getCloudletsFromGene().size();

i++) {

clt = gene.getCloudletsFromGene().get(i); // Gets

CloudLet

 clts.add(clt);

clt.setUserId(brokerId); Set BrokerId of CloudLet

 clt.setVmId(gene.getVmFromGene().getId()

); // Set VmId of Cloudlet to bind it to the VM

}

}

broker.submitCloudletList(clts);

 broker.submitVmList(vmlist);

The assessment is conducted based on the fitness

function outlined in Equation 1. Elitism is introduced

in e-HGA at lines 9 and 10, ensuring the replication

of the best chromosomes from each generation to the

next. This inclusion prevents the deterioration of

solution quality in e-HGA. The selection process at

line 19 is detailed in step 2, where fit chromosomes

are chosen using binary tournament selection for

genetic operations. The selected chromosomes then

undergo modified crossover and mutation processes,

distinguishing the proposed e-HGA from existing

HGAs. Notably, both genetic operators' effectiveness

is doubled through the combination of single- and

double-point crossover and mutation. The

pseudocode for these crossover and mutation routines

is presented in steps 3 and 4, respectively. Following

each generation, a neighborhood search is executed

using a load-balancing function, as outlined in

algorithm 5. The conclusion of each generation is

marked at line 28 of step 1, and the algorithm iterates

to line 5 for the next generation until termination

criteria are satisfied.

4. Results
The primary distinguishing factor in cloud WS as

opposed to scheduling in multiprocessor or grid

systems, is the emphasis on utility. In the latter two

systems, scheduling primarily revolves around

meeting deadlines or minimizing the makespan of a

workflow. In contrast, in the "pay-as-you-go" cloud

environment, economic cost is as crucial as

performance. Resources are typically provisioned as

VMs in the cloud, with virtualization technology

forming the foundation of IaaS clouds. This

technology is a key differentiator from utility grid

computing [50]. However, current virtualization

technology falls short of providing stable

performance guarantees. Sharifi et al. [51]

documented an overall central processing unit (CPU)

performance variability of 24% on Amazon's EC2

cloud, attributing it to resource sharing and

competition among co-scheduled VMs on the same

physical machine. This performance instability

renders scheduling methods reliant on task runtime

estimations unsuitable in such an environment.

Consequently, new WS Methods have been

developed specifically for cloud environments.

WS is a well-known NP hard problem that is being

studied extensively by researchers to enhance

workflow execution performance. NP-hard problems

are generally referred to as problems that can be

reduced to a different problem that is solved using a

polynomial time on a nondeterministic machine, such

as an optimization problem, a fractional knapsack, a

travel salesman, etc. The experimental performance

matrix of our e-HGA as against a regular HGA using

some variance of CloudLet while the experiment was

done using an increasing number of VM, the result of

our experiment shows that the e-HGA performed

better than a regular HGA The performance metric

used is makeSpan. MakeSpan is the maximum time it

takes for a single VM to complete all tasks or jobs

assigned to it. In our experiment, for example, in

Table 1, 15 cloudlet tasks were assigned to a VM.

The makespan time of a conventional HGA took

9.668 seconds, while that of an e-HGA took 8.996

seconds. These show that the e-HGA performs better

than a normal HGA. The graph in Figure 11 shows

that the blue bars, representing the HGA, are taller

than the red bars, which represent the e-HGA. The

ascending order of the graph shows that the outcome

of the experiment increases as the number of

cloudlets increases. This study considered cloudlet

characteristics with different lengths with a constant

network environment and VM with different MIPS.

In addition, the e-HGA algorithm was tested with

varying VMs and cloudlets (Tasks) to observe their

behavior. The same process was repeated for:

shortest job first and first come first serve algorithm

system. The algorithms’ performance was recorded

based on the performance metrics. It is recommended

International Journal of Advanced Technology and Engineering Exploration, Vol 11(111)

135

that further research work should be carried out in the

area of workflow scheduler using different type HGA

to further optimize the workflow result in the area of

efficiency and resource management.

The primary distinguishing factor between WS in the

cloud and in multiprocessor or grid systems lies in

the emphasis on utility in the latter two systems,

scheduling revolves around meeting deadlines or

minimizing the overall time required for a workflow.

However, in the cloud environment, where users are

charged for resources based on usage, economic costs

are equally important as performance considerations

[52]. Cloud resources are typically provided as VMs,

and the underlying virtualization technology serves

as the foundation for constructing IaaS clouds. This

technology is crucial and sets cloud computing apart

from utility grid computing. In the context of this

study, a population refers to a collection of

simultaneous search points or sets of chromosomes

(or individuals). Each iterative step that produces a

new population is referred to as a generation. The

HGA is a GA that has been combined with a local

search procedure. The hybridization of GA with a

gradient-based search method can help overcome

certain limitations specific to GA. With each

iteration, this hybridization can enhance the

exploration of the solution search space, ultimately

reducing computation time. To evaluate the

performance of the proposed e-HGA compared to a

conventional HGA, an experiment was conducted

using an increasing number of VMs [53]. The

experimental performance metrics of both algorithms

are presented in the Tables and graphs in the

subsequent sections, specifically focusing on cloudlet

variance.

Table 1 shows the result of the experiment using e-

HGA in comparison to HGA. From Table 1,

makeSpan is the time taken for a task (Cloudlet) to

complete using the HGA against e-HGA. The

experiment started using 15 cloudlets assigned to 5

VM and our cloudlets were increased by 5 in each

experiment. It takes the HGA 9.668 seconds to

complete the task, while our e-HGA takes 8.996

seconds to execute the same task. The experimental

performance matrix of the e-HGA as against a

regular HGA using some variance of cloudLet while

the experiment was done using an increasing number

of VM, the result revealed that the e-HGA performed

better than a regular HGA. The performance metric

used is makeSpan. MakeSpan is the maximum time it

takes for a single VM to complete all tasks or jobs

assigned to it. In our experiment, for example, in

Table 1, 15 cloudlet tasks were assigned to a VM.

The make-span time of a conventional GA took 9.668

seconds, while that of a HGA took 8.996 seconds.

These show that the e-HGA performs better than a

normal HGA.

Table 1 5 VM MakeSpan of HGA against e-HGA

 5 Virtual machines

 MakeSpan

 S/N Cloudlets HGA e-HGA

1 15 9.668 8.996

2 20 11.534 9.172

3 25 12.034 11.712

4 30 13.65 13.18

5 35 14.568 14.9

6 40 16.204 16.566

7 45 17.82 17.886

8 50 20.362 19.542

9 55 21.18 21.17

10 60 22.59 21.18

Table 2 presents the experimental findings related to

the performance of the conventional HGA and the

proposed e-HGA. The evaluation metric used in this

study was the makeSpan, which represents the time

required for task completion (cloudlet) using either

algorithm. The makeSpan serves as a valuable metric

for assessing the performance of VM executing

cloudlets in cloud computing. It quantifies the total

time required for completing a set of tasks, making it

a crucial indicator of scheduling efficiency. A

reduced makeSpan signifies effective resource

allocation, optimized task execution, and minimized

idle time on VMs thereby indicating a more efficient

scheduling strategy in the context of cloud

computing. The experiment commenced with 20

cloudlets assigned to 10 VMs. The conventional

HGA completed the task in 9.014 s, whereas the e-

HGA accomplished it in 8.698 s. With 30 cloudlets

Awolola Tejumola Busayo et al.

136

on 10 VMs, the conventional HGA and e-HGA

required 9.95 s and 9.148 s, respectively, for task

completion. Increasing the number of cloudlets to 40,

the conventional HGA and e-HGA took 10.674 s and

9.558 s, respectively. When 50 cloudlets were

assigned to 10 VMs, the conventional HGA

completed the task in 11.01 s, while the e-HGA

required 12.863 s. Subsequently, with 60 cloudlets on

10 VMs, the conventional HGA and e-HGA achieved

task completion in 14.74 s and 14.242 s, respectively.

For 70 cloudlets on 10 VMs, the conventional HGA

and e-HGA required 15.38 s and 17.25 s,

respectively. Based on the research conducted by

[54] that used the same method to decision-making to

cut server-side computation time and cost. To

optimize the VM both locally and globally, this study

presents hybrid optimization. The parameter-efficient

fine-tuning (PEFT) algorithm was used to initialize

the system and functioned as a heuristic algorithm.

This approach lowers the error associated with

random optimization initialization. Flower pollination

with grey wolf optimization (GWO) utilizing a

hybrid technique yields significantly better end

results than flower pollination with a GA. The

suggested method additionally took into account the

dependability parameter for various operations [54].

Table 2 The 10-VM MakeSpan of e-HGA against a

conventional HGA

10 Virtual machines

S/N MakeSpan

 Cloudlets HGA e-HGA

1 20 9.014 8.698

2 30 9.95 9.148

3 40 10.674 9.558

4 50 11.01 12.863

5 60 14.74 14.242

6 70 15.38 17.25

7 80 16.56 17.06

8 90 19.2 18.84

9 100 19.5 18.53

10 110 21 20.72

Moving on to 80 cloudlets on 10 VMs, the

conventional HGA and e-HGA took 16.56 s and

17.06 s, respectively, for task completion. With 90

cloudlets on 10 VMs, the conventional HGA and e-

HGA required 19.2 s and 18.84 s, respectively.

Similarly, for 100 cloudlets on 10 VMs, the

conventional HGA and e-HGA achieved task

completion in 19.5 s and 18.53 s, respectively.

Finally, with 110 cloudlets on 10 VMs, the

conventional HGA and e-HGA completed the task in

21.0 s and 20.72 s, respectively. The experimental

results indicate that the proposed e-HGA generally

outperformed the conventional HGA in terms of task

execution time. However, it is noteworthy that the

conventional HGA exhibited faster performance than

the e-HGA when 50 and 70 cloudlets were assigned

to 10 VMs. Thus, further research is necessary to

elucidate these findings more comprehensively.

Figure 11 illustrates the graph for the 50 and 70

cloudlets experiment; the blue conventional HGA

bars are all taller than the red e-HGA bars. The

ascending order of the graph demonstrates that the

experiment outcome increased together with the

number of cloudlets. Table 3 presents the

experimental results comparing the performance of

the conventional HGA with the proposed e-HGA.

The experiment involved increasing the number of

cloudlets by 20 in each iteration starting with 40

cloudlets assigned to 20 VMs. starting with 40

cloudlets assigned to 20 VMs. The conventional

HGA completed the task in 10.1 s, while the

proposed e-HGA achieved task completion in 9.77 s

for this initial setup. As 60 cloudlets were executed

on 20 VMs, the conventional HGA and e-HGA

required 10.9 s and 10.1 s, respectively, for task

completion. With 80 cloudlets on 20 VMs, the

conventional HGA and e-HGA took 13.97 s and

10.47 s, respectively, to complete the task.

Table 3 The 20-VM MakeSpan of enhanced e-HGA

against a conventional HGA

20 Virtual machines

S/N MakeSpan

 Cloudlets HGA e-HGA

1 40 10.1 9.77

2 60 10.9 10.1

3 80 13.97 10.47

4 100 15.07 14.53

5 120 16.6 15.57

6 140 18.98 17.38

7 160 20.8 18.93

8 180 21.94 19.18

9 200 24.57 20.85

10 220 26.51 22.43

Increasing the number of cloudlets to 100 on 20

VMs, the conventional HGA and e-HGA completed

the task in 15.07 s and 14.53 s, respectively. For 120

cloudlets on 20 VMs, the conventional HGA and e-

HGA achieved task completion in 16.6 s and 15.57 s,

respectively. Similarly, with 140 cloudlets on 20

VMs, the conventional HGA and e-HGA required

18.98 s and 17.38 s, respectively, for task completion.

With 160 cloudlets on 20 VMs, the conventional

HGA and e-HGA completed the task in 20.8 s and

18.93 s, respectively. Moving on to 180 cloudlets on

International Journal of Advanced Technology and Engineering Exploration, Vol 11(111)

137

20 VMs, the conventional HGA and e-HGA required

21.94 s and 19.18 s, respectively, for task completion.

With 200 cloudlets on 20 VMs, the conventional

HGA and e-HGA achieved task completion in 24.57

s and 20.85 s, respectively. Furthermore, with 220

cloudlets on 20 VMs, the conventional HGA and e-

HGA completed the task in 26.51 s and 22.43 s,

respectively. Consistent with previous findings, the

results clearly demonstrate that the proposed e-HGA

outperformed the conventional HGA in terms of task

execution time. Table 4 depicts the experimental

results of increasing the cloudlet number by 30 for

each experiment. The experiment began with 60

cloudlets assigned to 30 VMs. The conventional

HGA required 11.45 s to complete the task while the

proposed e-HGA required 9.074 s to execute the

same task. As soon as 90 cloudlets were executed on

30 VMs, the conventional HGA and e-HGA achieved

task completion in 14.49 s and 9.7 s, respectively.

With 120 cloudlets on 30 VMs, the conventional

HGA and e-HGA required 16.06 s and 10.42 s,

respectively, for task completion. Increasing the

number of cloudlets to 150 on 30 VMs, the

conventional HGA and e-HGA completed the task in

19.96 s and 10.15 s, respectively. For 180 cloudlets

on 30 VMs, the conventional HGA and e-HGA

achieved task completion in 21.86 s and 13.74 s,

respectively.

Table 4 The 30-VM MakeSpan of the e-HGA against

a conventional HGA

30 Virtual machines

S/N MakeSpan

 Cloudlets HGA e-HGA

1 60 11.45 9.074

2 90 14.49 9.7

3 120 16.06 10.42

4 150 19.96 10.15

5 180 21.86 13.74

6 210 25.05 16.322

7 240 27.44 18.22

8 270 31.93 18.3

9 300 33.78 23.3

10 330 36.576 22.17

Similarly, with 210 cloudlets on 30 VMs, the

conventional HGA and e-HGA required 25.05 s and

16.322s, respectively, for task completion.

Furthermore, with 240 cloudlets on 30 VMs, the

conventional HGA and e-HGA completed the task in

27.44 s and 18.22 s, respectively. With 270 cloudlets

on 30 VMs, the conventional HGA and e-HGA

achieved task completion in 31.93 s and 18.3 s,

respectively. The completion time increased as 300

cloudlets were run on 30 VMs, with the conventional

HGA and e-HGA requiring 33.78 s and 23.3 s,

respectively, for task completion. Finally, with 330

cloudlets on 30 VMs, the conventional HGA and e-

HGA completed the task in 36.576 s and 22.17 s,

respectively. Consistent with previous findings, these

results demonstrate that the proposed e-HGA

generally outperforms the conventional HGA in

terms of task execution time. Aziza and Krichen

developed a GA based technique for modeling and

solving a workflow-scheduling problem in cloud

computing. The heuristic model and heterogeneous

earliest finish time (HEFT) interfere in the formation

of the starting population. Based on simulation

findings utilizing real-world scientific process

datasets, we show that the suggested technique

outperforms existing HEFT and other strategies

investigated in this research. In other words,

investigations reveal that our suggested technique is

highly efficient, making it potentially relevant for

cloud WS. We created a GA-based module that was

incorporated into the workflowSim framework,

which is based on cloudSim [55]. Table 4, where the

blue HGA bars are taller than the red e-HGA bars.

The ascending order of the graph demonstrates that

the experimental outcome increased together with the

cloudlet number. The results also demonstrated that

the proposed e-HGA performed better than the

conventional HGA.

5. Discussion
Cloud WS differs significantly from scheduling in

multiprocessor or grid systems due to its emphasis on

utility. Unlike the latter two systems, where

scheduling is primarily focused on meeting deadlines

or minimizing workflow makeSpan, the "pay-as-you-

go" cloud environment places equal importance on

economic cost and performance. In the cloud,

resources are commonly provisioned as VM, and

virtualization technology serves as the basis for IaaS

clouds. This technological approach sets cloud

scheduling apart from utility grid computing [8].

Despite the widespread use of virtualization

technology, it currently struggles to provide stable

performance guarantees. Schad et al. [56] found a

24% overall CPU performance variability on

Amazon's EC2 cloud, attributing it to resource

sharing and competition among co-scheduled VMs

on the same physical machine. This performance

instability makes scheduling methods relying on task

runtime estimations impractical in such

environments. Consequently, new WS methods have

been specifically developed for cloud environments.

WS, a well-known NP hard problem, is extensively

studied by researchers aiming to enhance workflow

Awolola Tejumola Busayo et al.

138

execution performance. NP-hard problems are

generally those that can be reduced to a different

problem solved using polynomial time on a

nondeterministic machine, such as optimization

problems like the fractional knapsack or the traveling

salesman.

In our experiments, we evaluated the performance of

our e-HGA against a regular HGA using a variant of

CloudLet. The experiments involved an increasing

number of VM. The results demonstrated that the e-

HGA outperformed the regular HGA, with the

performance metric being makeSpan. MakeSpan is

defined as the maximum time it takes for a single

VM to complete all assigned tasks or jobs. For

instance, in Table 1, where 15 cloudlet tasks were

assigned to a VM, the makeSpan time for the

conventional HGA was 9.668 seconds, while the e-

HGA took 8.996 seconds. These results indicate the

superior performance of the e-HGA compared to the

normal HGA.

The graphical representation in Figure 11, with blue

bars representing HGA and red bars representing e-

HGA, further supports these findings. The ascending

order of the graph illustrates that the experiment's

outcome improves as the number of cloudlets

increases. This study considered cloudlet

characteristics with varying lengths, maintaining a

constant network environment, and VM with

different MIPS. Additionally, the e-HGA algorithm

underwent testing with varying VMs and cloudlets

(Tasks) to observe its behavior. Similar processes

were repeated for the shortest job first and first-

come-first-serve algorithm systems. The algorithms'

performance was recorded based on the specified

performance metrics. The study recommends further

research to explore workflow schedulers using

different types of HGA for optimizing workflow

efficiency and resource management. WS is a well-

known NP hard problem, which is being studied

extensively by researchers to enhance the workflow

execution performance. NP-hard generally refer to as

problems that can be reduced to a different problem

which are solved using a polynomial time on a

nondeterministic machine such as optimization

problem, Fractional Knapsack, Travel salesman etc.

The proposed e-HGA collected tasks and mapped

them evenly to the VMs. The results contributed to

research on task scheduling optimization by

scheduling task operations to reduce cost, enable

efficient resource allocation, and manage time.

Summary this study examined cloud computing and

its concepts and subsequently considered cloudlet

characteristics using different lengths with a constant

network environment and VMs with different MIPS.

The proposed e-HGA was tested with an increasing

number of VMs to observe its behavior. The process

was repeated using an increasing number of

cloudlets. Based on the results, it was concluded that

the number of cloudlets increased simultaneously

with the increased number of VMs. Overall, the e-

HGA performed better than the conventional HGA,

and only seldom performed poorly in comparison to

the conventional HGA. Therefore, it is recommended

that further research be conducted in the area of

makeSpan and cost of VM-scheduled task execution

on cloud computer workflow schedulers using

different HGAs to minimize cost and time in relation

to the resources allocated for VM task execution. It is

recommended that further research work should be

carried out in the area of workflow scheduler using

different types of HGA to further optimize the

workflow result in the area of efficiency and resource

management.

5.1Related research study

Based on the research conducted by Arif et al. [57]

that introduced a machine learning-based downtime

optimization (MLDO) strategy in 2016, which is an

adaptive live migration technique based on predictive

mechanisms that lowers downtime during live

migration over wide area networks for normal

workloads. Our key contribution is to use machine

learning approaches to decrease downtime. Machine

learning approaches are also employed in the

prediction model, and adaptive threshold levels

include automated learning. In terms of downtime

noticed throughout the migration process, we

compare our suggested strategy to existing solutions

and find improvements of up to 15% [57]. A

represented range of contemporary scientific

difficulties using five procedures genetic algorithm-

education and technology institute (GA-ETI) was

tested and demonstrated its superiority against three

well-known and up-to-date schedulers in this field

(HEFT, provenance, and feature selective validation

(FSV). Their investigation demonstrates that GA-ETI

solutions have a shorter timeframe and lower

monetary cost when compared to HEFT alternatives.

Unlike FSV, GA-ETI generates a comprehensive

scheduling configuration prior to execution that is of

higher quality. Unlike Provenance, GA-ETI creates

its own scheduling configuration and only uses a

workflow manager system as a middleware to carry

out scheduling choices [58]. GA-ETI also indicated

that, contrary to popular belief, effective workflow

execution does not need a large number of resources

International Journal of Advanced Technology and Engineering Exploration, Vol 11(111)

139

(in comparison to the number of parallel nodes) in

most circumstances. To continue this effort, the

research intends to develop/incorporate cloud pricing

models that take into account the variation of VM

hiring costs during scheduling. Their research will

also concentrate on performance oscillation in cloud

systems and its influence on application execution

[58]. As it was explained in the literature by [59] that

identified limitations in the ant lion optimizer (ALO)

and sine cosine algorithm (SCA) when applied to

high complexity functions, as they tended to

converge to local optima [59]. To address this issue,

the researchers introduced a novel hybrid algorithm

by combining ALO with SCA for multi-objective

optimization in scheduling SWFs. The key

innovation involved incorporating a greedy approach

and introducing randomness based on chaos theory

within a green cloud computing framework. The

primary objectives of the algorithm were to minimize

task makeSpan and cost, reduce energy consumption

for a more environmentally friendly cloud computing

environment, and enhance throughput. The

researchers implemented their approach using the

workflowSim simulator and compared the results

with the strength Pareto evolutionary algorithm

(SPEA) WS workflow algorithm. The outcomes

demonstrated a notable reduction in both energy

consumption and makeSpan, showcasing the efficacy

of the proposed hybrid algorithm [59].

To produce an initial population, based on the

research conducted by Aziza and Krichen (2020) that

suggest a hybrid GA-based technique combined with

HEFT [55]. They are searching for a solution that

offers the optimal trade-off between time and cost

while fulfilling the timeline and budget limits in their

recommended strategy. Their model's primary

function is to optimize the time required to conduct a

group of interdependent operations in the cloud,

lowering computational costs while meeting

deadlines and budgets. To that end, they provide a

hybrid strategy based on a GA for modeling and

improving a workflow-scheduling problem in cloud

computing. The HEFT interferes in the formation of

the starting population [55]. Based on the results of

their simulations utilizing real-world scientific

process datasets, the suggested strategy outperforms

existing HEFT and other strategies investigated in

this study. In other words, experiments suggest that

their proposed technique is highly efficient, making it

potentially relevant for cloud WS. They created a

GA-based module that was incorporated into the

workflowSim framework, which is based on

cloudSim [55]. Flower pollination algorithm (FPA)

and GWO techniques proposed by [54] are employed

as a hybrid employing PEFT algorithm for global and

local optimization. The major purpose of the WS

algorithm is to save time and money by utilizing VM

migration [54]. In NP time, this method solves the

subset problem and the choice problem. It works on

the decision-making process to minimize server-side

computation time and cost. This research suggests

using hybrid optimization to improve the VM both

locally and globally. The PEFT algorithm was used

to initialize the system and functioned as a heuristic

algorithm. This approach lowers the error associated

with random optimization initialization. Flower

pollination with GWO utilizing a hybrid technique

yields significantly better end results than flower

pollination with a GA. The suggested method

additionally took into account the dependability

parameter for various operations [54]. Introduce of an

advanced HGA known as the e-HGA by [60], this

novel approach combines the power of GAs with the

efficiency of local search techniques. As a result, the

e-HGA exhibits the capability to effectively navigate

the solution space, preserve diversity, and converge

towards high-quality scheduling solutions tailored for

optimizing cloud workflows. A comparative analysis

between the e-HGA and the conventional HGA

demonstrated that the e-HGA outperformed the latter

in terms of task completion speed across the majority

of cases. In scenarios involving the execution of 50

and 70 cloudlets across ten VMs, it was observed that

the conventional HGA outperformed the e-HGA in

terms of execution speed. To illustrate, when 20

cloudlets were allocated to 10 VMs, the traditional

HGA completed the task in 9.014 seconds, while the

e-HGA achieved it in 8.698 seconds. As the count of

both VMs and cloudlets increased concurrently, the

traditional HGA consistently maintained its

advantage over the e-HGA in terms of execution

times. Our investigation leads to the conclusion that

the performance of scheduling algorithms is notably

influenced by the specific configuration of cloudlets

and VMs.

5.2Performance analysis and discussion

In this segment, we conduct a comprehensive

analysis of the performance of the proposed

algorithm, e-HGA. The evaluation involves utilizing

datasets with diverse characteristics, and the obtained

results are compared against several selected

algorithms, namely heuristics Microsoft certified

professional (MCP) and HEFT, a generic

evolutionary algorithm and recently introduced HGA

and hybrid Self-Improved chimp optimization

algorithm with glow swarm optimization algorithm

Awolola Tejumola Busayo et al.

140

(HSCGS) The inclusion of these algorithms, which

are based on different approaches, provides a solid

foundation for studying and comparing the behavior

of e-HGA. For the performance metric, we selected

30 VM. The VMs across all algorithms exhibit a 95%

confidence interval for their corresponding values.

This implies that for any workflow of a similar

nature, the schedule length would fall within the

given interval with 95% certainty. In some bar charts,

the confidence interval may not be visually

distinguishable from the mean value due to the scale

used in those graphs (see Figure 11).

Figure 11 Performance of 30 Cloudlets at 100 population size

The proposed algorithm undergoes evaluation

through simulations on a target system characterized

by heterogeneity. Both resources and network links

in the execution environment are heterogeneous. As

tasks vary based on the workload type, the

heterogeneity of execution nodes and tasks is taken

into account in the heterogeneous execution times of

each task on execution nodes. Similarly, the

heterogeneity of network links and edges is implicitly

considered through varying communication costs

associated with the edges. Following numerous

simulations, the most suitable parameters for the

proposed algorithm are identified, yielding optimal

results with crossover and mutation probabilities set

at 0.8 and 0.02, respectively. To streamline the

simulations, the population size and the number of

generations are both set to 100.

A complete list of abbreviations is summarized in

Appendix I.

6. Conclusion and recommendation
The proposed e-HGA collected tasks and mapped

them evenly to the VMs. The results contributed to

research on task scheduling optimization by

scheduling task operations to reduce cost, enable

efficient resource allocation, and manage time.

Summary this study examined cloud computing and

its concepts and subsequently considered cloudlet

characteristics using different lengths with a constant

network environment and VMs with different MIPS.

The proposed e-HGA was tested with an increasing

number of VMs to observe its behavior. The process

was repeated using an increasing number of

cloudlets. Based on the results, it was concluded that

the number of cloudlets increased simultaneously

with the increased number of VMs. Overall, the e-

HGA performed better than the conventional HGA,

and only seldom performed poorly in comparison to

the conventional HGA. Therefore, it is recommended

that further research be conducted in the area of

makeSpan and cost of VM-scheduled task execution

on cloud computer workflow schedulers using

different HGAs to minimize cost and time in relation

to the resources allocated for VM task execution. It is

recommended that further research work should be

carried out in the area of workflow scheduler using

different types of GA to further optimize the

workflow result in the area of efficiency and resource

management.

Acknowledgment
This work is supported by Fundamental Research Grant

Scheme (FRGS/1/2018/ICT03/UNISZA/02/01) under the

Ministry of Higher Education (MOHE) and Universiti

Sultan Zainal Abidin (UniSZA), Malaysia.

Conflicts of interest
The authors have no conflicts of interest to declare.

0

5

10

15

20

25

30

35

40

T
im

e

PEGA

MCP

HEFT

HSCGS

HGA

e-HGA

60 90 120 150 180 210 240 270 300

Cloudlets

International Journal of Advanced Technology and Engineering Exploration, Vol 11(111)

141

Data availability
The data and code are owned by the Fundamental Research

Grant Scheme (FRGS/1/2018/ICT03/UNISZA/02/01)

under the Ministry of Higher Education (MOHE) and

Universiti Sultan Zainal Abidin (UniSZA), Malaysia. They

are confidential and cannot be released to third parties

without the ministry's permission.

Author’s contribution statement
Awolola Tejumola Busayo: Study conception and design,

Awolola Tejumola Busayo, Zarina Mohamad, Nor Aida

Mahiddin, and Wan Nor Shuhadah Wan Nik: Data

collection, analysis and interpretation of results, Awolola

Tejumola Busayo, Zarina Mohamad, Nor Aida

Mahiddin, and Wan Nor Shuhadah Wan Nik: Draft

manuscript preparation.

References
[1] Sun Q, Chien S, Hu D, Chen X. Optimizing

customized transit service considering stochastic bus

arrival time. Journal of Advanced Transportation.

2021; 2021:1-9.

[2] Tumuluru JS, Mcculloch R. Application of hybrid

genetic algorithm routine in optimizing food and

bioengineering processes. Foods. 2016; 5(4):1-13.

[3] Sulaiman M, Halim Z, Waqas M, Aydın D. A hybrid

list-based task scheduling scheme for heterogeneous

computing. The Journal of Supercomputing. 2021;

77:10252-88.

[4] Kaya SH, Corneille KV, Yassa S, Romain O, Etienne

NM, Laurent BI. Industry 4.0 and industrial workflow

scheduling: a survey. Journal of Industrial Information

Integration. 2023: 100546.

[5] Kumari M, Singh V. Breast cancer prediction system.

Procedia Computer Science. 2018; 132:371-6.

[6] Liu Y, Liu J, Zhu X, Wei D, Huang X, Song L.

Learning task-specific representation for video

anomaly detection with spatial-temporal attention. In

international conference on acoustics, speech and

signal processing 2022 (pp. 2190-4). IEEE.

[7] Karami S, Azizi S, Ahmadizar F. A bi-objective

workflow scheduling in virtualized fog-cloud

computing using NSGA-II with semi-greedy

initialization. Applied Soft Computing. 2024;

151:111142.

[8] Abdel-basset M, Mohamed R, Abd EW, Sharawi M,

Sallam KM. Task scheduling approach in cloud

computing environment using hybrid differential

evolution. Mathematics. 2022; 10(21):1-26.

[9] Zawawi O. Resource-efficient data pre-processing for

deep learning (Doctoral Dissertation). Computer,

Electrical and Mathematical Science and Engineering

(CEMSE) Division. 2024.

[10] Bezdan T, Zivkovic M, Bacanin N, Strumberger I,

Tuba E, Tuba M. Multi-objective task scheduling in

cloud computing environment by hybridized bat

algorithm. Journal of Intelligent & Fuzzy Systems.

2022; 42(1):411-23.

[11] Singh S, Kumar R, Singh D. An empirical

investigation of task scheduling and VM consolidation

schemes in cloud environment. Computer Science

Review. 2023; 50:100583.

[12] Wu Z, Liu X, Ni Z, Yuan D, Yang Y. A market-

oriented hierarchical scheduling strategy in cloud

workflow systems. The Journal of Supercomputing.

2013; 63:256-93.

[13] Houssein EH, Gad AG, Wazery YM, Suganthan PN.

Task scheduling in cloud computing based on meta-

heuristics: review, taxonomy, open challenges, and

future trends. Swarm and Evolutionary Computation.

2021; 62:100841.

[14] Zhao S, Miao J, Zhao J, Naghshbandi N. A

comprehensive and systematic review of the banking

systems based on pay-as-you-go payment fashion and

cloud computing in the pandemic era. Information

Systems and e-Business Management. 2023:1-29.

[15] Concha SL, Monzon BV. Harnessing the potential of

emerging technologies to break down barriers in

tactical communications. Telecom. 2023; 4(4):709-31.

[16] Huang J. The workflow task scheduling algorithm

based on the GA model in the cloud computing

environment. Journal of Software. 2014; 9(4):873-80.

[17] Abazari F, Analoui M, Takabi H, Fu S. MOWS:

multi-objective workflow scheduling in cloud

computing based on heuristic algorithm. Simulation

Modelling Practice and Theory. 2019; 93:119-32.

[18] Zhu Z, Zhang G, Li M, Liu X. Evolutionary multi-

objective workflow scheduling in cloud. IEEE

Transactions on Parallel and Distributed Systems.

2015; 27(5):1344-57.

[19] Alzain MA, Pardede E, Soh B, Thom JA. Cloud

computing security: from single to multi-clouds. In

45th Hawaii international conference on system

sciences 2012 (pp. 5490-9). IEEE.

[20] Jensen M, Schwenk J, Bohli JM, Gruschka N, Iacono

LL. Security prospects through cloud computing by

adopting multiple clouds. In 4th international

conference on cloud computing 2011 (pp. 565-72).

IEEE.

[21] Krishna BH, Kiran S, Murali G, Reddy RP. Security

issues in service model of cloud computing

environment. Procedia Computer Science. 2016;

87:246-51.

[22] Yasrab R. Platform-as-a-service (PaaS): the next hype

of cloud computing. arXiv preprint arXiv:1804.10811.

2018.

[23] Sadeeq MM, Abdulkareem NM, Zeebaree SR, Ahmed

DM, Sami AS, Zebari RR. IoT and cloud computing

issues, challenges and opportunities: a review.

Qubahan Academic Journal. 2021; 1(2):1-7.

[24] Osanaiye O, Chen S, Yan Z, Lu R, Choo KK, Dlodlo

M. From cloud to fog computing: a review and a

conceptual live VM migration framework. IEEE

Access. 2017; 5:8284-300.

[25] Wang L, Von LG, Kunze M, Tao J. Schedule

distributed virtual machines in a service oriented

environment. In 24th international conference on

advanced information networking and applications

2010 (pp. 230-6). IEEE.

https://repository.kaust.edu.sa/collections/7c9222cc-bbeb-4ce6-89ac-abc397d154a7
https://repository.kaust.edu.sa/collections/7c9222cc-bbeb-4ce6-89ac-abc397d154a7
https://repository.kaust.edu.sa/collections/7c9222cc-bbeb-4ce6-89ac-abc397d154a7

Awolola Tejumola Busayo et al.

142

[26] Masdari M, ValiKardan S, Shahi Z, Azar SI. Towards

workflow scheduling in cloud computing: a

comprehensive analysis. Journal of Network and

Computer Applications. 2016; 66:64-82.

[27] Żotkiewicz M, Guzek M, Kliazovich D, Bouvry P.

Minimum dependencies energy-efficient scheduling in

data centers. IEEE Transactions on Parallel and

Distributed Systems. 2016; 27(12):3561-74.

[28] Rahman M, Hassan R, Ranjan R, Buyya R. Adaptive

workflow scheduling for dynamic grid and cloud

computing environment. Concurrency and

Computation: Practice and Experience. 2013;

25(13):1816-42.

[29] Bala A, Chana I. A survey of various workflow

scheduling algorithms in cloud environment. In 2nd

national conference on information and

communication technology 2011 (pp. 26-30).

[30] Rodriguez MA, Buyya R. A taxonomy and survey on

scheduling algorithms for scientific workflows in IaaS

cloud computing environments. Concurrency and

Computation: Practice and Experience. 2017;

29(8):e4041.

[31] Vincent FY, Redi AP, Hidayat YA, Wibowo OJ. A

simulated annealing heuristic for the hybrid vehicle

routing problem. Applied Soft Computing. 2017;

53:119-32.

[32] Saima GA. Workflow optimization in distributed

computing environment for stream-based data

processing model/Saima Gulzar Ahmad. Doctoral

Dissertation, University of Malaya. 2017.

[33] Gul F, Mir I, Abualigah L, Sumari P. Multi-robot

space exploration: an augmented arithmetic approach.

IEEE Access. 2021; 9:107738-50.

[34] Daoud MI, Kharma N. A hybrid heuristic–genetic

algorithm for task scheduling in heterogeneous

processor networks. Journal of Parallel and

Distributed Computing. 2011; 71(11):1518-31.

[35] Srikanth M, Kessler JA. Nanotechnology-novel

therapeutics for CNS disorders. Nature Reviews

Neurology. 2012; 8(6):307-18.

[36] Seemakuthi S, Siriki VA, Lydia EL. A review on

various scheduling algorithms. International Journal of

Scientific & Engineering Research. 2015; 6:769-79.

[37] Zheng W, Sakellariou R. Budget-deadline constrained

workflow planning for admission control. Journal of

Grid Computing. 2013; 11(4):633-51.

[38] Zhao L, Ren Y, Sakurai K. Reliable workflow

scheduling with less resource redundancy. Parallel

Computing. 2013; 39(10):567-85.

[39] Zhong Z, Chen K, Zhai X, Zhou S. Virtual machine-

based task scheduling algorithm in a cloud computing

environment. Tsinghua Science and Technology.

2016; 21(6):660-7.

[40] Wei XJ, Bei W, Jun L. SAMPGA task scheduling

algorithm in cloud computing. In 36th Chinese control

conference 2017 (pp. 5633-7). IEEE.

[41] Lin R, Li Q. Task scheduling algorithm based on pre-

allocation strategy in cloud computing. In

international conference on cloud computing and big

data analysis 2016 (pp. 227-32). IEEE.

[42] Fan Y, Liang Q, Chen Y, Yan X, Hu C, Yao H, et al.

Executing time and cost-aware task scheduling in

hybrid cloud using a modified DE algorithm. In

computational intelligence and intelligent systems: 7th

international symposium, Guangzhou, China, 2015

(pp. 74-83). Springer Singapore.

[43] Gupta N, Patel N, Tiwari BN, Khosravy M. Genetic

algorithm based on enhanced selection and log-scaled

mutation technique. In proceedings of the future

technologies conference 2018 (pp. 730-48). Springer

International Publishing.

[44] Wei H, Li S, Jiang H, Hu J, Hu J. Hybrid genetic

simulated annealing algorithm for improved flow shop

scheduling with makespan criterion. Applied Sciences.

2018; 8(12):1-20.

[45] Liaw CF. A hybrid genetic algorithm for the open

shop scheduling problem. European Journal of

Operational Research. 2000; 124(1):28-42.

[46] Oh IS, Lee JS, Moon BR. Hybrid genetic algorithms

for feature selection. IEEE Transactions on Pattern

Analysis and Machine Intelligence. 2004;

26(11):1424-37.

[47] Lin CJ, Su SC. Protein 3D HP model folding

simulation using a hybrid of genetic algorithm and

particle swarm optimization. International Journal of

Fuzzy Systems. 2011; 13(2):140-7.

[48] Calheiros RN, Ranjan R, De RCA, Buyya R.

Cloudsim: a novel framework for modeling and

simulation of cloud computing infrastructures and

services. arXiv preprint arXiv:0903.2525. 2009.

[49] Buyya R, Murshed M. Gridsim: a toolkit for the

modeling and simulation of distributed resource

management and scheduling for grid computing.

Concurrency and Computation: Practice and

Experience. 2002; 14(13‐15):1175-220.

[50] Wu F, Wu Q, Tan Y. Workflow scheduling in cloud: a

survey. The Journal of Supercomputing. 2015;

71:3373-418.

[51] Sharifi M, Shahrivari S, Salimi H. PASTA: a power-

aware solution to scheduling of precedence-

constrained tasks on heterogeneous computing

resources. Computing. 2013; 95(1):67-88.

[52] Hosseinzadeh M, Ghafour MY, Hama HK, Vo B,

Khoshnevis A. Multi-objective task and workflow

scheduling approaches in cloud computing: a

comprehensive review. Journal of Grid Computing.

2020; 18:327-56.

[53] Radulescu A, Van GAJ. Fast and effective task

scheduling in heterogeneous systems. In proceedings

9th heterogeneous computing workshop 2000 (pp.

229-38). IEEE.

[54] Khurana S, Singh R. Workflow scheduling and

reliability improvement by hybrid intelligence

optimization approach with task ranking. EAI

Endorsed Transactions on Scalable Information

Systems. 2019; 7(24):1-10.

[55] Aziza H, Krichen S. A hybrid genetic algorithm for

scientific workflow scheduling in cloud environment.

Neural Computing and Applications. 2020; 32:15263-

78.

International Journal of Advanced Technology and Engineering Exploration, Vol 11(111)

143

[56] Schad J, Dittrich J, Quiané-ruiz JA. Runtime

measurements in the cloud: observing, analyzing, and

reducing variance. Proceedings of the VLDB

Endowment. 2010; 3(1-2):460-71.

[57] Arif M, Kiani AK, Qadir J. Machine learning based

optimized live virtual machine migration over WAN

links. Telecommunication Systems. 2017; 64:245-57.

[58] Casas I, Taheri J, Ranjan R, Wang L, Zomaya AY.

GA-ETI: an enhanced genetic algorithm for the

scheduling of scientific workflows in cloud

environments. Journal of Computational Science.

2018; 26:318-31.

[59] Mohammadzadeh A, Masdari M, Gharehchopogh FS,

Jafarian A. A hybrid multi-objective metaheuristic

optimization algorithm for scientific workflow

scheduling. Cluster Computing. 2021; 24:1479-503.

[60] Wood T, Ramakrishnan KK, Shenoy P, Van DMJ.

CloudNet: dynamic pooling of cloud resources by live

WAN migration of virtual machines. ACM Sigplan

Notices. 2011; 46(7):121-32.

Awolola Tejumola Busayo is a

graduate of Al-Madinah International

University, Kuala Lumpur, Malaysia,

where he received his Bachelor of

Science degree in Computer Science

with a focus on Networking. His

research interest was in preventing

DDOS attacks through

Identifier/Locator Separation. Currently, he is conducting

research for his MSc on Optimizing Universal Workflow

Schedulers using Hybrid Genetic Algorithms at Universiti

Sultan Zainal Abidin, Kuala Terengganu, Malaysia.

Email: tejumolaawolola@yahoo.com

Zarina Mohamad (Phd) was born in

Kuala Terenggnu, Terengganu,

Malaysia in 1972. She received her

B.S. and M.S. degrees in computer

science in 2000 and 2004, respectively.

In 2013 she received PhD from

Universiti Tun Hussien Onn Malaysia.

She is currently a senior lecturer in the

Faculty of Informatics and Computing, Universiti Sultan

Zainal Abidin (UniSZA), Terengganu, Malaysia.

Her research interests are Distributed Databases, Data

Grids, Distributed Systems, Cloud Computing and

Optimization.

Email: zarina@unisza.edu.my

Nor Aida Mahiddin (PhD) received a

B.S. in Information Technology from

National University of Malaysia, and

M.S degree in computer science

majoring in Distributed Computing and

PhD degree in computer and

information science from Auckland

University of Technology, New

Zealand. She is currently a senior lecturer in the Faculty of

Informatics and Computing, Universiti Sultan Zainal

Abidin (UniSZA), Terengganu, Malaysia. Her research

interests include Network Designs, Modelling and

Performance Evaluation, Wireless Communication

Networks, Disaster Resilient Network Design,

Optimisation of Gateway Congestion Control, Ad Hoc and

Sensor Networks and Wireless Mesh and Routing

Protocols.

Email: aidamahiddin@unisza.edu.my

Wan Nor Shuhadah Wan Nik (PhD)

is currently a senior lecturer in the

Faculty of Informatics and Computing,

University Sultan Zainal Abidin

(UniSZA), Malaysia. She received a

PhD in Computer Science (Distributed

Systems) from University of Sydney,

Australia in 2012 before appointed as a

Deputy Director (Infrastructure & Services) at Information

Technology Centre, UniSZA from year 2014 - 2017. She

has been involved in more than ten research grants and led

four national grants in the area of Distributed Systems. Her

main research interest includes the area of Computer

Networks and Distributed Systems, including Scheduling in

Grid/Cloud and Utility Computing, Wireless Sensor

Network, IoT, Heuristics and Optimization and Blockchain.

Email: wnshuhadah@unisza.edu.my

Appendix I
S. No. Abbreviation Description

1 ACO Ant Colony Optimization

2 ALO Ant Lion Optimizer

3 CPR Constrained Pressure Residual

4 CPU Central Processing Unit

5 e-HGA Enhanced Hybrid Genetic Algorithm

6 EC2 Elastic Compute Cloud

7 FSV Feature Selective Validation

8 FPA Flower Pollination Algorithm

9 G&PSO Greedy particle Swarm Optimization

10 GWO Grey Wolf Optimization

11 GA Genetic Algorithm

12 GA-ETI Genetic Algorithm- Education and
Technology Institute

13 HEFT Heterogeneous Earliest Finish Time

14 HGA Hybrid Genetic Algorithm

15 HSCGS Self-Improved Chimp Optimization
Algorithm with Glow Swarm

Optimization Algorithm

16 IAAS Infrastructure as a Service

17 LB-ACO Load-Balancing Ant Colony
Optimization

18 LIGO Laser Interferometer Gravitational-

Wave Observatory

19 MCP Microsoft Certified Professional

20 MI Million Instructions

21 MIPS Million Instructions Per Seconds

22 MPGA Multi-Population Genetic Algorithm

23 MLDO Machine Learning-Based Downtime

Optimization

24 NP Nondeterministic Polynomial

25 NSGA-II Non-dominated Sorting Genetic

Algorithm II

26 PAAS Platform as a Service

27 PACO Pre-Allocation Ant Colony
Optimization

Awolola Tejumola Busayo et al.

144

28 PD Protein Data

29 PEFT The Parameter-Efficient Fine-Tuning

30 QOS Quality of Service

31 SA Simulated Annealing

32 SAAS Software as a Service

33 SAMPGA Self-Adaptive Multi-Population
Genetic Algorithm

34 SCA Sine Cosine Algorithm

35 SIPHT Stanford Information Prediction

Heterogeneous Tools

36 SLAs Service Level Agreements

37 SPEA Strength Pareto Evolutionary

Algorithm

38 SWFs Scientific Workflows

39 VMs Virtual Machines

40 WMS Workflow Management System

41 WS Workflow Scheduling

