
International Journal of Advanced Technology and Engineering Exploration, Vol 10(104)                                                                                                            

ISSN (Print): 2394-5443   ISSN (Online): 2394-7454 

http://dx.doi.org/10.19101/IJATEE.2022.10100538 

906 

 

Investigating the performance vulnerability of AODV protocol of IoT network 

under SYN-flood attack  
 

Abhijit Biswas
1
, Rabinder Kumar Prasad

2
, Abhijit Boruah

2
 and Sudipta Majumder

2* 
 

Department of Computer Science and Engineering, Assam University, Silchar, Assam, India-788011
1
  

Department of Computer Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India-786004
2
  

  
Received: 09-December-2022; Revised: 17-July-2023; Accepted: 20-July-2023 

©2023 Abhijit Biswas et al. This is an open access article distributed under the Creative Commons Attribution (CC BY) License, 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

1.Introduction 
Technology is an absolute necessity for all people in 

today's world, as evidenced by the growing reliance 

on it in practically every area of our lives. With the 

fast-developing internet of things (IoT) applications, 

the world is undergoing significant changes [1]. In 

recent years, IoT has become a remarkable 

phenomenon. It connects physical and virtual items 

that have been embedded with sensors, software, and 

other technologies [2]. The vision of IoT is to utilize 

the internet to enable communication and information 

sharing among compatible devices worldwide. 

Furthermore, the IoT network comprises a collection 

of connected gadgets, excluding commonly used 

computing devices such as mobiles and desktop 

computers.  

 

 
*Author for correspondence 

IoT has permeated various industries, from healthcare 

to large corporations [3]. It transforms the traditional 

computing devices in our environment into intelligent 

objects, thereby influencing human living standards. 

For instance, IoT devices can track and record vital 

measures like oxygen saturation (SPO2), sleep 

patterns, etc., and promptly report them in case of 

emergencies to increase the chances of survival for 

those affected [4]. 

 

In the event of an accident, appropriate decisions are 

made to send automated and swift emergency 

messages to the nearest police and medical services. 

The IoT network greatly assists in the manufacturing 

and assembly processes of manufacturing industries. 

It also aids in the packaging and logistics of 

industries [5]. Routing plays a crucial role in 

decision-making for IoT networks. In an IoT 

network, "routing" refers to the act of determining a 
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route for data to flow from one device to another 

inside the network. This route will allow the data to 

reach its destination. Because IoT networks typically 

consist of a large number of devices, which may be 

located in a variety of locations, it is vital to 

implement effective routing to guarantee that data is 

transferred promptly and accurately. IoT routing 

protocols will often take into account several criteria 

when choosing the most efficient route for data to 

follow. These criteria include the network topology, 

bandwidth availability, power consumption of the 

devices, and network congestion [6]. Different forms 

of IoT applications require different kinds of routing 

protocols since each kind of protocol has its own 

unique set of features [7]. 

 

Depending on what the network needs and how it 

works, IoT networks use different routing algorithms. 

Routing algorithms that are often used in IoT 

networks are: 

 Routing protocol for low-power and lossy 

networks (RPL), commonly known as RPL, is a 

distance-vector routing system made for networks 

with low power and poor connectivity. It is made 

to work with devices that have limited memory, 

processing power, and power backup [8]. 

 Dynamic source routing (DSR) is another reactive 

routing system that only finds a route between two 

nodes when it is needed. It sends packets to the 

next node using source routing, where the sender 

gives the full path to the next node [9]. 

 Open shortest path first (OSPF), commonly known 

as OSPF, is a link-state routing system used in 

internet protocol (IP) networks. It is used in IoT 

networks where fast connection and a lot of nodes 

are needed [10]. 

 Border gateway protocol (BGP), commonly 

known as BGP, is a gateway system that is used to 

link different networks. It is used in IoT networks 

to connect different devices that work on their own 

[11]. 

 Ad-hoc on-demand distance vector (AODV) is a 

reactive routing system that is widely used in 

mobile ad-hoc networks (MANET), IoT networks 

and vehicular ad-hoc networks (VANET). It sets 

up a route between two nodes only when it's 

needed and keeps the routes as long as the two 

nodes are communicating with each other [12]. 

 

However, IoT-based applications are at risk due to 

their enormous growth in popularity and the rapid 

expansion of technologies. Researchers must 

thoroughly examine the weaknesses, security, and 

threats to make the envisioned IoT network possible. 

Vulnerabilities can be defined as flaws in the 

architecture or functionality of a framework that 

allows intruders to gain unauthorized access and 

carry out malicious activities that degrade system 

performance [13]. Intruders/attackers can infiltrate 

networks by exploiting known flaws in IoT devices. 

One such flaw is exploited in domain name system 

(DNS) rebinding attacks, which enable the processing 

and exfiltration of data from internal networks [14]. 

Vulnerabilities can be identified in various parts of 

IoT systems. Researchers have made significant 

efforts to discover vulnerabilities in the services and 

different layers of the five-layer architecture of IoT 

networks [15]. However, synchronization (SYN) 

flood attacks remain prominent in various types of 

networks. This attack involves bombarding the 

intended server with a large number of transmission 

control protocol (TCP) SYN packets, which are used 

to establish new connections [16]. 

 

The challenge in [17] was to propose a method for 

dynamically balancing the processing load across 

dispersed controllers in software-defined networking 

(SDN)-based fifth-generation (5G) networks while 

addressing the critical security issue of SYN flood 

attacks. The simulation results must also demonstrate 

the efficacy of the proposed system in detecting and 

mitigating SYN flood attacks, which are part of 

distributed denial of service (DDoS) attacks in 5G 

networks. Similarly, the task in [18] was to develop 

an efficient model for detecting and mitigating DDoS 

attacks induced by TCP SYN flood in SDN 

environments. Additionally, the objective in [19] was 

to develop a system capable of detecting SYN flood 

attacks based on the power generated during 

connection establishment, but this is a challenging 

undertaking due to the limitations and vulnerabilities 

of wireless sensor networks. In [20], the primary 

challenge is to detect TCP SYN flood attacks in a 

multitenant cloud environment from the perspective 

of a cloud service provider. The researchers face the 

challenge of designing a cross-layer technique that 

relies on machine learning to detect SYN flood 

attacks on IoT networks that employ RPL as their 

routing algorithm. 

 

Similarly, IoT networks having AODV routing 

protocol may be susceptible to SYN flood attacks 

because it is the protocol that sets up routes between 

nodes that need to communicate each other. This 

makes it easier to keep routing tables up to date, 

especially in big networks where nodes are always 

joining and leaving. AODV is also good at quickly 

and efficiently finding routes. It does this by sending 
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route requests (RREQ)   to its neighbouring nodes 

and then sending them to other nodes until a route is 

found. Because of this, it works well in networks 

with dynamic layouts, where the way the network is 

set up can change often [21].  

 

In IoT networks that use the AODV routing system, 

it can be hard to find an SYN flood attack.  The 

different ways that connected devices act and the 

different technologies they use make it hard to 

understand how an attack on an IoT network works. 

Along with this, there is no way to make the 

detection system work for all IoT framework layers 

because their network parameters are not the same. 

Keeping these challenges in mind, the proposed study 

focuses on multiple SYN flood attacks at the 

transport layers of an IoT network and tries to collect 

performance parameters for the network. 

 

In this article, we examine the flaws in the IoT 

network’s architecture while using the AODV 

routing protocol and provide our findings. Our study 

aims to find any existing vulnerabilities in the 

transport layer to create SYN-flood attacks and study 

the effects of those vulnerabilities on the network's 

performance when applications are using AODV as 

their routing protocol. The expected outcome of our 

research is to find existing vulnerabilities at the 

transport layer in the IoT network before they are 

exploited by malicious individuals or entities. Also, 

we will be able to model how those vulnerabilities 

can affect the network performance metrics like 

throughput, delay, jitter, energy consumption by IoT 

devices and overhead cost, etc. These findings can 

assist IoT network administrators in better planning 

and implementing preventive measures against SYN 

flood attacks on IoT networks that utilize the AODV 

protocol. 

 

A brief introduction is provided in this section. The 

remaining research article is divided into several 

sections. Section 2 comprises a literature review 

where the related work conducted by other 

researchers is presented. These studies shed light on 

various vulnerabilities of the network. The materials 

and methodology are described in section 3, while 

section 4 reports the experimental results. Section 5 

presents a discussion of the results. Finally, in section 

6, conclusion is provided, along with the future work. 

 

2.Literature review 
Vulnerabilities of a network are loopholes in the 

design of the framework of the network. Intruders use 

the loopholes to execute malicious activity. They can 

access unapproved data or information [13]. 

Vulnerabilities may exist in many places like 

operating systems, programming software, control 

software, etc. Vulnerabilities exist because of human 

factors and programming complexity [15]. For 

reducing the programming complexity of the 

functioning of the IoT network, its architecture is 

divided into five layers [2225] as in Figure 1. 

 

 
Figure 1 Versions of 5-layer architecture of IoT 

network 

 

The section of literature review has subsections 

elaborating on performance vulnerabilities of various 

layers of IoT architecture, various routing protocols 

of IoT networks and a final review analysis. 

 

2.1Various performance vulnerabilities of various 

layers of IoT architecture as mentioned by 

various authors are discussed, are as follows: 
2.1.1Perception layer 

Vulnerabilities can cause different types of attacks on 

the perception layer of the IoT network. Spoofing 

attacks, battery drainage, eavesdropping, sybil threat, 

malicious data injection, hardware failure, node 

capturing, tag cloning, and side-channel attacks are 

examples of attacks that exploit the perception layer's 

vulnerabilities [26]. 

 

Spoofing attacks are the most common attack at the 

perception layer of an IoT network. This attack in the 

perception layer of IoT networks involves sending 

fake or misleading data to the network while 

pretending to be a real sensor or device. Attackers 

can fake data in many ways, such as by changing a 

device's media access control (MAC) address, using a 

man-in-the-middle (MITM) attack to intercept and 

change data, or making fake reports from sensors. 

Spoofing attempts can cause a lot of trouble for IoT 
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networks [27]. By sharing fake information, attackers 

can trick the network into doing the wrong thing or 

making the wrong choice. For example, a faked 

temperature monitor in a smart home system could 

cause the heating or cooling to be wrong, making the 

people inside uncomfortable. In industrial IoT 

systems, fake sensor data could cause the wrong 

control of the process, which could damage the 

product or the equipment. 

 

Spoofing attacks are easy to carry out and can be 

used to get around standard security systems like 

firewalls and intrusion detection systems. Attackers 

can create fake data with tools and methods that are 

easy to get. This makes it hard for network managers 

to find and stop these attacks. Researchers used the 

received signal strength and the number of connected 

neighbours, to propose a method to find spoofing 

attacks in the IoT network [2729]. In an inter-cluster 

network, received signal strength is used to find the 

spoofing attacks, pinpoint its location, and stop it. 

But the received signal strength isn't good at stopping 

intra-cluster spoofing attacks, so the number of 

connected neighbours was used to find, spot, and stop 

intra-cluster spoofing attacks. The proposed model 

used network simulator 2 (ns-2) to compare how well 

the method works when spoofing attacks are present 

and when they are not. Because of this, the suggested 

model makes it easier to find and stop spoofing. The 

method has the advantage that in the presence of 

received signal strength and received signal strength, 

spoofing attacks are greatly reduced and network 

performance is enhanced. However, without a 

spoofing attack, the network's performance degrades 

continuously. 

 

Another popular attack at the perception layer is a 

jamming attack. A jamming attack is a kind of 

wireless attack that messes up the radio frequency 

(RF) messages that devices use to communicate to 

the network. The attacker uses a jamming device to 

fill the RF spectrum with noise or interference signals 

that can mess with or drown out the signals that IoT 

devices are trying to send. This makes it hard for the 

network to get data from the affected devices and 

handle it, which can cause delays and even data loss 

[30, 31]. A deep learning technique-based anomaly-

based IDS system for IoT networks for detecting 

jamming attacks was proposed [32]. Specifically, a 

deep neural network model with filter-based feature 

selection in which highly correlated features are 

eliminated has been presented. Additionally, the 

model is modified using several parameters and 

hyperparameters. For this purpose, the UNSW-NB15 

dataset containing jamming attack classes is utilised. 

The proposed model was accurate to the extent of 

84%. The advantage of this approach is that by using 

generative adversarial networks to generate synthetic 

data of minority attacks to resolve class imbalance 

issues in the dataset, 91% accuracy can be attained 

with a balanced class dataset. 

 

There are some limitations to the jamming attacks, 

such as: 

 Needs to be close: Jamming devices must be close 

to the IoT devices for them to work. This means 

that the attacker has to be in the same place as the 

network or object they want to attack. 

 Jamming devices send out a strong RF signal that 

can be picked up by the network or other security 

systems. This can let security staff know that an 

attack is happening so they can take steps to lessen 

its effects. 

 Can be expensive: A device that jams signals can 

be expensive, and an attack may need more than 

one device to stop the network from working. This 

can make it harder for low-level attackers to do a 

jamming attack and reduce the number of people 

who can do it. 

 

Overall, jamming attacks are a major threat to the 

perception layer of IoT networks, so organisations 

need to put in place security measures to avoid and 

detect them. Some of these steps are using anti-

jamming technologies, putting in place intrusion 

detection and prevention systems, and putting in 

place security protocols to make sure that devices 

accessing the network are legitimate [3134]. 
2.1.2Abstraction layer 

Vulnerabilities are not just limited to the perception 

layer but also other layers. There is generally no or 

too little physical protection for IoT systems in an 

untrusted environment. An intruder can steal or 

damage sensors leading to illegal access or malicious 

change in data. “Address resolution protocol (ARP) 

priority” vulnerability is used to listen to traffic 

between an intelligent device and a gateway. This 

type of attack happens at the abstraction layer [26]. A 

MITM attack is a type of cyberattack in which an 

offender intercepts the communication between two 

devices or nodes on an IoT network at abstraction 

layer and changes or manipulates the communication 

[35]. A MITM attack can be very bad because it can 

make personal data and services less private, less 

trustworthy, and less available. MITM attacks have a 

high success rate, can get to private information, are 

hard to find, have a limited range, and can be found 

by security systems. Organisations need to put in 
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place security measures, such as encryption, access 

control, and intrusion detection and prevention 

systems, to stop and find these kinds of threats [34].  

Any node in a VANET network can function as a 

router for the other nodes, and a malicious node 

connected to the network can inject spoofed routing 

tables into the other nodes, thereby influencing the 

network's operation. To circumvent this problem, a 

secure AODV routing protocol for DoS attack 

detection is devised [36]. The proposed method is a 

modified variant of the original AODV routing 

protocol that incorporates enhancements to the RREQ 

packet and route reply (RREP) packet protocols. 

Cryptography-based encryption and decryption are 

included to verify the source and destination nodes 

for added security. The proposed method was 

demonstrated using various network parameters, 

including packet loss, end-to-end latency, packet 

delivery ratio (PDR), and routing request overhead, 

with the help of NS-2.33 simulator. The advantage of 

the proposed method is that it outperforms the 

existing AODV routing protocol and improves 

network performance during black hole attacks at the 

abstraction layer [36, 37]. 

 

There are some limits to the DoS attacks on the 

abstraction layer, such as [37, 38]: 

 A lot of requests are needed: The success of a DoS 

attack rests on how much traffic is made. To 

overwhelm the device or service being attacked, it 

may take a lot of requests or messages. 

 Can be found and stopped: Firewalls and intrusion 

detection and prevention systems, which are used 

to protect networks, can find and stop DoS attacks 

by filtering or blocking data from suspicious 

sources. 

 May not work on all devices: DoS attacks might 

not work on devices or services that have built-in 

defences against these kinds of attacks, like load 

balancers or fallback mechanisms. 

 

DoS attacks at the abstraction layer of an IoT 

network are a major threat, and organizations must 

put in place security measures to prevent and identify 

them. These steps can include putting in place access 

controls, using intrusion detection and prevention 

systems, and putting in place security rules to make 

sure that devices that connect to the network are 

legitimate. Spoofing attacks, which include 

authentication attacks, are considered to violate of the 

privacy principle [39]. These attacks involve 

impersonating nodes. The attack is an active DoS 

attack if a program or a system is forcibly rejected 

from accessing resources. Attacks are passive attacks 

where one application stops another from running on 

the device. Tag cloning, sleep deprivation, traffic 

analysis attack, etc., also occur at the abstraction 

layer [40]. 
2.1.3Network layer 

The sinkhole attack in an IoT environment can 

devastate and compromise the entire communication 

system. When normal nodes initiate the process of 

sending their packets through sinkhole nodes, the 

sinkhole attacker nodes begin to disrupt the network's 

traffic flow. In the existence of sinkhole attack nodes, 

the destination (e.g., sink node i.e., gateway/base 

station) either does not receive the required 

information or receives incomplete or altered 

information. The network performance is reduced as 

a consequence, and the communication's efficiency 

and reliability suffer. In the presence of such an 

attack, the throughput decreases, the end-to-end 

latency grows, and the PDR falls. In addition, it may 

negatively impact other network performance 

parameters. Consequently, it is of the utmost 

importance to provide an efficient and competent 

scheme for mitigating this attack in IoT 

environments. In paper [41], a proposed intrusion 

detection scheme aims to safeguard the IoT 

environment from sinkhole attacks. Through the 

exchange of messages, the resource-rich edge nodes 

(edge servers) detect various forms of sinkhole 

attacker nodes in this method. A practical 

demonstration of the proposed method is also 

provided by computing the various performance 

parameters using the well-known NS2 simulator. In 

addition, a security analysis of the proposed method 

is conducted to demonstrate its resistance to diverse 

sinkhole attacks. The proposed method obtains a 

detection rate of approximately 95.83% and a false 

positive rate of 1.03%, which are significantly higher 

than other comparable existing schemes. The 

proposed method has the benefit of being efficient in 

terms of computation and communication costs. 

Eventually, the method will be a good fit for 

applications that can be utilised in crucial and 

sensitive operations (such as surveillance, security, 

and monitoring systems) [41].  

 

Blackhole and wormhole attacks are types of attacks 

that can occur at the network layer of an IoT network. 

Blackhole attacks involve intercepting and dropping 

data packets received by the IoT devices in the 

network, making them unavailable to other devices 

[42]. They can cause significant damage to the 

network, disrupt normal traffic, and prevent devices 

from communicating with each other, leading to a 

DoS condition. The blackhole attack is easy to carry 
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out and can be used to disrupt IoT networks quickly. 

Wormhole attacks involve setting up a shortcut 

between two points in the network, creating a tunnel 

that can be used to divert or manipulate traffic, 

intercepting the packets, and replaying them at the 

other end of the tunnel [43, 44]. They can cause 

significant damage to the network, bypass network 

security mechanisms, steal sensitive data, and cause a 

DoS condition. The wormhole attack can be difficult 

to detect and can bypass many security mechanisms. 

A self-adaptive framework into networks was 

introduced and thus, the data transmission process is 

augmented, to detect and prevent the attacks [44]. 

Using the proposed self-adaptive framework for the 

AODV routing protocol network communication 

protocol, the affected area is measured and rectified 

in the study. The performance of the network 

restoration technique is investigated through the 

usage of simulation. The proposed framework 

indicates promising overall performance with the aid 

of using accomplishing excessive flow network rate 

and minimum delay [35, 44]. It is found that the 

accuracy of the optimized simulation-based method 

is better than conventional methods. The energy 

consumption of the proposed method with 35 nodes 

is 7.14% superior to web-oriented architecture 

(WOA) and FireFly, 5.7% superior to grey wolf 

optimization, and 10.3% superior to particle swarm 

optimization. 

 

The vulnerabilities, in this layer, are exploited to 

carry out attacks like jamming, false-data injection, 

eavesdropping, unfair access, hello flood, congestion, 

message queuing telemetry transport (MQTT) 

exploit, SYQ- flooding, etc. Desynchronization is 

also an example of attacks possible at the transport 

layer. In this attack, an attacker can break genuine 

linkages between two nodes by desynchronizing 

transmissions between them. This form of attack 

includes delivering forged communications like false 

flag messages to all sides of a participating 

communication channel. They will lose their ability 

to communicate if they are forced to lose their SYN. 

Session hijacking occurs when an attacker takes a 

user's session identifier (ID) and impersonates the 

legitimate user to seize control of the user's online 

session [26, 27]. 
2.1.4Middleware layer 

Injection attacks on the middleware layer of IoT 

networks entail inserting malicious code into the 

communication that takes place between the apps and 

the devices. This can result in unauthorised access, 

the theft of data, or the compromising of the system. 

In the middleware layer of an IoT network, attackers 

will inject malicious code, which will often take the 

form of code written in structured query language 

(SQL), eXtensible markup language (XML), or java 

script. This code is then performed by the system, 

which grants the attacker access to the data, allows 

the attacker to modify the data, or grants the attacker 

unauthorised access to the system [4547]. 

 

Injection attacks can result in the unauthorised access 

of devices or apps, as well as the theft of data and 

compromise of systems. Attackers have the option of 

utilising this attack to either take control of the IoT 

network or as a springboard from which to launch 

other attacks. Autoencoders have been presented as a 

novel method for detecting injection attacks [48]. 

They utilised the sensor data correlation in time and 

space, which can aid in identifying fabricated data. 

Moreover, the denoising autoencoders are used to 

clear the fabricated data. Evaluation of performance 

demonstrates the effectiveness of the technique in 

detecting injection attacks. It also surpasses a support 

vector machine-based method employed for the same 

purpose. The advantage of this approach is that it has 

been demonstrated that this method's data cleansing 

algorithm is very effective at recovering clean data 

from corrupted (attacked) data. Injection attacks have 

the potential to be very successful because they can 

take advantage of vulnerabilities in the middleware 

layer that are difficult to locate and repair.  Injection 

attacks can be difficult to prevent because they take 

advantage of weaknesses at the middleware layer, 

which are difficult to locate and remedy [47, 48]. 

 

It is possible to help prevent vulnerabilities that can 

be exploited by attackers by making use of safe 

coding practices, constantly updating and patching 

the middleware software, and updating the program 

at regular intervals [49]. SQL injection attacks and 

DDoS attacks can be used by an adversary to take 

control of secondary nodes and even the principal 

ones under certain circumstances [50]. 

 

Crypto-jacking attacks at the middleware layer of IoT 

networks involve hackers exploiting vulnerabilities in 

the middleware software to install cryptocurrency 

mining software [51]. This allows them to use the 

computing resources of IoT devices to mine 

cryptocurrencies without the knowledge or consent of 

the device owner. The attacks can cause IoT devices 

to slow down or crash, affecting their performance 

and usability, consume more power and generate 

higher energy bills [52]. Crypto-jacking attacks are 

relatively easy to execute and can be highly 

profitable for attackers, especially if they can target a 
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large number of IoT devices. Crypto-jacking attacks 

rely on vulnerabilities in the middleware software, 

which can be patched or updated to prevent the attack 

[53]. 
2.1.5Application layer 

There are various types of security concerns or 

vulnerabilities at the operation layer and application 

layer. The security concern raising due to the 

vulnerabilities being unauthorized access, fake 

information, MITM, end-to-end encryption attack, 

integration attack, DoS attacks and illegal 

intervention attacks. The application layer is in 

charge of the services provided to clients. This layer 

addresses each program's own set of security 

concerns. Various types of attacks and threats that 

exploit application layer vulnerabilities are data 

tampering, malware attack, SQL injection, cross-site 

script, code injection, etc. [27]. The issue of IoT 

security sensor manipulation in an office setting was 

addressed [54]. Data from real-world environments is 

aggregated, and two machine-learning techniques are 

utilized to detect sensor tampering. Initially, a real-

time view of the traffic patterns is used to train an 

unsupervised machine learning method based on 

isolation forests for anomaly detection. Subsequently, 

a novel anomaly detection system using machine 

learning generates labels based on traffic patterns and 

employs a decision tree supervised method. The 

achieved accuracy of the isolation forest is 84% 

based on the silhouette metric. Furthermore, the 

supervised machine learning model, evaluated 

through 10 cross-validations for decision trees, 

yielded the highest classification accuracy of 91.62% 

with the lowest false positive rate. Attacks at the 

application layer are constrained by the fact that they 

take a certain level of technical expertise and the 

ability to write and run malicious code, as well as the 

fact that security measures like firewalls and 

intrusion detection systems can identify and reduce 

the impact of such attacks. 

 

Attacks on the application layer can lead to the theft 

of sensitive information, unauthorized entry to the 

system, and the application not working as it should. 

Attacks at the application layer can also compromise 

the integrity and privacy of the data sent between the 

devices and the application. To stop these kinds of 

attacks, it's important to be cautious. Session 

hijacking happens because of vulnerabilities in the 

network layer [55, 56]. 

 

 

2.2Explanation of the exploitation of various 

routing protocols' vulnerabilities in IoT 

networks by malicious nodes 

 A malicious node erroneously asserts that it is the 

quickest path to the target node and then discards 

all data packets along the way. As a result, 

legitimate nodes are unable to communicate with 

one another, leading to a DoS attack. The attack is 

called a “black hole” attack. Researchers in 

[5760] proposed exponential smoothing, social 

computing, and federated learning-based approach 

for detecting black hole attacks. 

 Another challenge faced by IoT networks is when 

two or more hostile nodes establish a tunnel 

between themselves beyond the regular 

communication range and then send data packets 

through this tunnel instead of following the usual 

routing method. This attack can be used as a 

springboard for additional attacks, such as packet 

manipulation or dropping. This attack is called a 

“wormhole attack”. Researchers in [61] proposed 

deep learning and cost estimation techniques to 

detect wormhole attacks in IoT networks. 

 In a sybil attack, a malicious node establishes 

many dummy accounts and acts as though it is 

multiple other nodes in the network. This gives the 

attacker complete command over the network and 

the ability to conduct a wide variety of attacks, 

such as denial of service and selective forwarding. 

In [62-64], collaborative edge computing, bloom 

filter, unclonable function, and time-varying 

channels-based approaches were proposed for 

detecting sybil attacks on IoT networks. 

 A malicious node can launch a “selective 

forwarding attack” by only sending specific data 

packets to other nodes and discarding the rest. This 

has applications in both obfuscating sensitive 

information and preventing communication 

between specific nodes. A “heart-beat” 

communication hybrid optimization algorithm to 

demonstrate the possibility of selective forwarding 

attacks in IoT-based networks was elaborated in 

[63, 64]. 

 

The literature provides an in-depth exploration of the 

vulnerabilities that can exist in an IoT network.  In 

the research, the weaknesses that can be found in an 

IoT network are looked at in depth. The literature 

study shows that the IoT architecture is structured 

into several layers. Each layer has unique 

vulnerabilities. 
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The vulnerabilities are largely in the underlying 

protocols. These vulnerabilities are used by malicious 

entities. At the perception layer, for example, 

attackers develop spoofing attacks, battery depletion, 

eavesdropping, sybil attacks, and malicious data 

injection-like attacks. Various researchers have 

proposed various techniques to deal with such flaws 

or vulnerabilities. For instance, in [29], a strategy was 

proposed to detect spoofing attacks at the perception 

layer of an IoT network. This approach uses received 

signal strength and the number of connected 

neighbors to identify the attacks, leading to improved 

network performance. However, in the absence of an 

attack, network performance may suffer due to 

transmission costs. In [32], a novel anomaly-based 

IDS solution for IoT networks was presented to 

prevent attacks. This approach utilizes generative 

adversarial networks to produce synthetic data on 

minority attacks, addressing class imbalance issues in 

the dataset. The network layer of an IoT network can 

be vulnerable to various attacks, such as sinkholes, 

blackholes, false-data injection, eavesdropping, 

unfair access, hello floods, congestion, etc., caused 

by flaws in the underlying protocols. To identify 

blackhole and wormhole threats in IoT networks, a 

self-adaptive architecture was proposed for the 

AODV routing protocol network [44]. A simulation 

program was used to analyze the performance of the 

network restoration technique, revealing that the 

optimized simulation-based method outperforms 

conventional methods in terms of accuracy. 

Additionally, the middleware layer of IoT networks 

can also be targeted by attacks, including data 

injection and crypto-jacking. In [48], a machine-

learning-based approach was suggested to detect 

bogus data injection attacks in industrial IoT. The 

model makes use of autoencoders. The model has a 

high rate of accuracy.  IoT sensor manipulation can 

occur in an office setting, and a mechanism has been 

devised to check if the IoT sensors are tampered [54]. 

Our research aims to examine the IoT network 

framework for any such existing vulnerabilities. We 

are focusing on the transport layer of the IoT 

reference model because this layer is responsible for 

end-to-end communication in IoT networks. This 

layer provides services like reliability and congestion 

avoidance. This layer also guarantees that packets 

will be delivered in the same order that they are sent. 

If vulnerabilities exist in this layer of the IoT 

architecture, then intruders or attackers will be able to 

degrade the performance of the network without 

raising any alarm. Our objective is to detect and 

exploit existing vulnerabilities in this layer to carry 

out SYN flood attacks before they are exploited by 

intruders. We will also examine the effects of the 

detected vulnerabilities on the performance of the IoT 

network. The next section represents the 

methodology of our investigation for vulnerabilities, 

associated attacks, and their effect on the IoT 

network performance. We have presented the 

necessary steps taken to record performance metrics 

in the next section. 

 

3.Materials and methods 
IoT's main component is wireless sensors, IPv6 over 

low power personal area network (LoWPAN) 

gateway, and a router. For simulation purposes, we 

have been using a network simulator known as 

Netsim 12.02. The software has all the necessary 

tools to simulate the IoT environment. The sensors 

are tiny, power-efficient devices used to collect 

essential signals. The sensor we used here is wireless. 

The LoWPAN gateways are devices that create a 

low-power wireless personal network based on the IP 

version 6 (IPv6). A router is a device that routes 

packets received from LoWPAN gateways to the 

wired node. 

 

We chose simulation as a study method because it 

allows us to accurately forecast the behavior of all 

IoT network components. It aids in the investigation 

of the flaws in the underlying protocols and their 

impact. These flaws should be pursued, investigated, 

and eliminated to prevent severe damage to IoT 

networks from malicious entities or organizations. 

  

In this article, we have demonstrated the creation of 

an SYN flood attack for an IoT device network using 

AODV as its routing protocol. The SYN-flood attack 

is a type of DoS attack that exploits the vulnerability 

of the TCP/IP protocol. SYN packets are normally 

used to establish connections between sensors and a 

wired node. Once the SYN packet and its 

acknowledgment packet are exchanged between the 

sensor and the wired node, they become eligible for 

data transfer. However, the vulnerability arises when 

a malicious node can misuse the exchange of SYN 

and acknowledgment packets, leading to a severe 

attack on the network. A hostile sensor sends an SYN 

packet to the wired node, resulting in an 

acknowledgment being sent back from the wired 

node to the malicious sensor. However, the sensor 

does not reply with an acknowledgment packet, 

resulting in a half-open connection. The malicious 

sensor repeats this process to create numerous half-

open connections, exhausting the resources available 

at the wired node. Additionally, we have measured, 

analyzed, and evaluated the performance of the SYN-
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flood attack on the AODV routing protocol in the IoT 

network. The flowchart for the performance 

evaluation of the AODV routing protocol under an 

SYN-flood attack in the IoT network is depicted in 

Figure 2. The following is the detailed explanation 

for each step in the flowchart for investigating the 

performance vulnerability of the AODV protocol in 

an IoT network under an SYN-flood attack. 

 

This is the beginning of the flowchart, signifying the 

start of the research procedure. 

 Start: This step indicates the start of the design and 

implementation of an IoT simulation module in 

Netsim, a simulation software tool used for 

simulating and analyzing IoT networks. This is a 

crucial step for the research team to construct a 

virtual environment of the IoT network and test the 

performance of the system under various 

conditions. 

 Design & implementation of IoT simulation 

module in Netsim: This step requires the design 

and implementation of an IoT simulation module 

in Netsim, a simulation software tool used for 

simulating and analyzing IoT networks. This is a 

crucial step for the research team to construct a 

test-bed environment of the IoT network and test 

the performance of the system under various 

conditions. 

 Design & implementation of SYN flood attack for 

IoT system: In this step, the research team plans 

and executes an SYN-flood attack against the 

under-investigation IoT system. This step is 

essential for analyzing the system's performance 

under attack and identifying the AODV protocol's 

vulnerabilities. In this step, the research team 

constructs simulation scenarios numbered 1 

through 5 to test the performance vulnerability of 

the AODV protocol of the IoT network under 

SYN-flood attack. These simulation scenarios will 

aid the research team in simulating various attack 

scenarios and evaluating numerous performance 

metrics. 

 Implementation of various scenarios for attack: 

This is a conditional step that occurs if the 

implementation of attack scenarios for the IoT 

system is effective. If the attack scenarios fail, the 

research team may need to revise their approach 

and make modifications to ensure successful 

implementation. 

 Performance metrics computation: This step 

involves measuring various performance metrics 

of the IoT network under the attack scenarios, such 

as throughput, jitter, delay, half-open connections, 

transmitted overhead, and energy consumed. 

These metrics will assist the research team in 

determining the effect of the SYN-flood attack on 

the performance of the AODV protocol in the IoT 

network. 

 

 
Figure 2 Process flow diagram of our study 

 

 Result analysis: The results of the performance 

metrics measured in step 5 are analyzed to 

determine the effect of the SYN-flood attack on 

the performance of the AODV protocol within the 

IoT network. The analysis assists the research 

team in identifying the effect of the vulnerability 

of the network under attack. 

 Conclusion: The research team concludes the 

performance vulnerability of the AODV protocol 

of the IoT network under the SYN-flood attack 

based on its analysis of the results. This step will 

assist the research team in determining the effect 

of SYN-flood attacks in the AODV protocol in IoT 

networks. 

 Stop: The end of the flowchart, signifying the 

conclusion of the research procedure. At this point, 

the research team has concluded its investigation 

and has a comprehensive comprehension of the 

system's behavior during the SYN-flood attack. 

The algorithm for creation of SYN flood attack for 

AODV routing protocol in IoT network is shown 

below. The novelty of this algorithm lies in its 

specific adaptation to the AODV routing protocol in 

IoT networks, where it effectively creates and tracks 
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malicious sensors that are capable of launching SYN flood attacks. 

 

Algorithms 1: Create SYN flood attack sensor for AODV routing protocol in IoT network. 

Input: List of IDs of all the sensors in the IoT network. 

Output: A set of malicious sensors capable of carrying out SYN flood attack. 

Initialize the list of malicious sensors (malicious_node) with the IDS of the attacker sensors. 

Define a helper function "is_malicious_node" that verifies whether a given device ID is included in the catalogue of malicious 

sensors. If true, return 1; otherwise, return 0 

 

Define the “syn_flood()” function: 

a. Create a socket address with the IP address of the target node (“anySocketAddr”). 

b. Call “get_Remotesocket()” to acquire a socket (s) for transmitting SYN packets. This function must return a socket 

depending on the device ID and socket address provided. 

c.  If the socket s is not already created: 

i. To create a new socket, use the “socket_creation()” function. 

ii. Using the “tcp_connect()” function, connect the new socket to the target sensor. 

d. If the socket exists already: 

i. Based on the event details, set the local device ID, remote device ID, and socket ID (sId) of the socket. 

ii. To transmit a SYN packet, invoke the “send_syn_packet()” function. 

e. Create a timer event to schedule the next SYN packet transmission after a delay of 1000 simulation units time. 

 

Define the “send_syn_packet(s)” function: 

a. Create a SYN packet using the function “create_syn()”. 

b. Set the initial sequence number(ISS) in the TCP control block (TCB) of the socket  

c.  Change the state of the TCP connection to “TCPCONNECTION_SYNC_SENT”. 

d. Increment the number of SYN retries. 

e. Refresh TCP metrics. 

f. Use the "send_to_network()" function to send the SYN packet to the network. 

g. Using the "add_timeout_event()" function, add a timeout event for the SYN transmission. 

 

Define the “socket_creation()” function: 

a.Create a new socket identifier (s_id). 

b.Determine the socket interface (sId) using the event details. 

c.Create a new socket by calling “tcp_create_socket()”. 

d.Configure the local and remote socket addresses for the newly created socket. 

        e. Assign local and remote device identifiers. 

 

The algorithm begins by inputting the IDs of the 

malicious sensors into the list of attacking sensors 

(malicious_node). This phase establishes the list of 

sensor IDs that will be deemed malicious during a 

SYN flood attack. The algorithm defines the 

“is_malicious_node(devid)” utility function. This 

function accepts a device ID (devid) as input and 

determines if it is present in the “malicious_node” 

list. The function returns 1 if the device ID is found 

in the list, signifying that the device is malicious. If 

not, it returns 0. The algorithm specifies the 

“syn_flood ()” function, which executes the SYN 

flood attack. The stages of this function are: 

a. In this step, the IP address of the target node is 

used to generate a socket address called 

“anySocketAddr”. This socket address will be used to 

specify the SYN packets' destination. 

b. call “get_Remotesocket()” function to acquire a 

socket (s) for transmitting SYN packets. This 

function should return a socket based on the supplied 

device ID and socket address. 

c. If the socket s does not already exist (i.e., it is 

NULL), the algorithm creates a new socket by calling 

“socket_creation()”. This new socket will be used for 

SYN flooding. After constructing the socket, the 

algorithm calls the “tcp_connect()” function to 

establish a TCP connection with the target sensor. 

d. If the socket already exists, based on the event 

details, the algorithm sets the local device ID, remote 

device ID, and socket ID (sId) of the socket. This 

phase verifies that the socket is configured correctly 

for a SYN flood attack. The “send_syn_packet()” 

function is then called to send a SYN packet over the 

existing socket. 

e. Finally, a timer event is created to schedule the 

next SYN packet transmission 1000 simulation units 

after the delay. This periodic scheduling ensures the 

continuous transmission of SYN packets during an 

attack. 

 

The algorithm specifies the “send_syn_packet(s)” 

function, which is responsible for transmitting a SYN 
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packet over the specified interface. The stages of this 

function are: 

a. The function uses the “create_syn()” function to 

generate a SYN packet. This function generates a 

SYN packet with the required preamble data. 

b. The ISS is specified in the socket's TCB. This 

sequence number corresponds to the TCP 

connection's ISS. 

c.The connection's state is altered to 

“TCPCONNECTION_SYN_SENT”. This state 

indicates that a SYN packet has been transmitted and 

the socket is awaiting the ACK. 

d. The quantity of SYN retry attempts increases. This 

counter tracks the number of times a SYN packet was 

transmitted without the expected response. 

e.TCP metrics are modified to reflect the 

transmission of the SYN packet. This step involves 

updating TCP connection statistics, including the 

number of SYN packets sent. 

f.The function “send_to_network()” is invoked to 

transmit the SYN packet to the network. This 

function sends the payload to its intended destination. 

g.The “add_timeout_event()” function adds an 

additional timeout event. This event is used to 

manage situations in which the expected response 

(such as an Acknowledgement (ACK)) is not 

received within a specified time limit. 

 

The algorithm concludes by defining the 

“socket_creation()” function, which is accountable 

for creating a new socket for the SYN flood attack. 

Let's examine the stages contained within this 

function: 

a. A new socket ID is created (s_id). This ID will be 

utilised to identify the socket uniquely. 

b. Based on the event details; the socket interface 

(sId) is determined. The socket interface provides 

access to functions and data structures particular to 

sockets. 

c. A request is made to the “tcp_create_socket()” 

function to create a new socket. This function creates 

a new socket and allots memory for its data 

structures. 

d.The local and remote socket addresses are 

configured for the newly created socket. With a port 

value of 0, the local socket address is set to the IP 

address of the device where the socket was created. 

The remote socket address is set to the IP address of 

the target node, along with the port number 0. 

e. The socket is allocated both the local and remote 

device IDs. The local device ID is set to the device 

ID contained in the event details, whereas the remote 

device ID is assigned to the target node. 

f. The newly constructed socket is returned as the 

function's final output. 

 

The wireless sensors, the LoWPAN gateway, the 

router, and the wired node are used to create a 

network to transmit sensed data from the sensor to 

the wired node. Table 1 provides information about 

the numbers of each device used in the simulation. 

 

Table 1 Devices used 

S. No. Device used Quantity 

1 LoWPAN gateway 1 

2 Wireless sensor 10 

3 Router 1 

4 Wired node 1 

 

Table 2 shows the different parameters used in a 

LoWPAN gateway, which is a device that connects 

LoWPANs to the Internet. 

 Flood time (in microseconds) is the amount of 

time that the network is flooded with data to find 

new nodes. It is set to 100 microseconds in this 

case. 

 The method used to keep a network from getting 

too crowded when multiple devices send data at 

the same time. "New_reno" is used in this case. 

 Maximum segment size: The largest amount of 

data that can be sent in a single section. It is set to 

1460 bytes in this case. 

 Transport layer protocol: The system that lets 

devices send and receive data. User datagram 

protocol (UDP) is used in this case. 

 The amount of time a device has to wait after 

ending a link before it can use the same port again. 

It is set to 120 seconds in this case. 

 Routing protocol: The protocol used to find the 

best way for data to get from source to target. 

AODV protocol is used in this case. 

 Modulation is the process of turning digital data 

into analogue signs that can be sent. Offset 

Quadrature Phase-Shift Keying (O-QPSK) is used 

in this case. 

 CCA mode: In this mode, the device listens to the 

channel to see if it is busy before sending data. 

This is called "carrier sense only mode." This 

method is used in this case. 

 Type of device: The kind of device that is used in 

the network. "LoWPAN Gateway" is used in this 

case.  
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Table 2 LoWPAN gateway parameters and properties 

S. No. Parameter  Value 

1   Flood time (micro sec.) Value 

2  Congestion control algorithm 100 

3  Maximum segment size New_reno 

4  Transport layer Protocol  1460 

5  Time-wait timer (Sec.) UDP 

6  VRouting protocol  120  

7  Modulation technique  AODV 

8  CCA mode O-QPSK 

9  Device type Carrier sense only 

The properties of various devices used in the 

simulation are shown in Table 3, Table 4, and Table 

5 for wireless sensors, router, and wired node 

respectively. 

 

Table 3 Wireless sensor properties 

S. No. Parameter  Value 

1 Device type IoT sensor 

2 Mobility model No_mobility 

3 Congestion control 

algorithm 

New_reno 

4 Maximum segment size 1460 

5 Protocol  UDP 

6 Routing protocol  AODV 

7 Unit back off period 

(symbols) 

20 

8 Connection medium  Wireless 

9 Power source Battery 

10 IdleModeCurrent (mA) 3.3 

11 Initial energy (mAH) 0.5 

12 Voltage (V) 3.6 

 

Table 4 Router properties 

S. No. Parameter  Value 

1 Device type IoT router 

2 Congestion 

control algorithm 

New_reno 

3 Maximum 

segment size 

1460 

4 Protocol UDP 

 

Table 5 Wired node properties 

S. No. Parameter  Value 

1 Device type  Wired node 

2 Interface count 1 

3 Congestion 

control algorithm 

New_reno 

4 Protocol Ethernet  

 

Table 6 shows various simulation scenarios used to 

measure the performance of AODV routing protocols 

in IoT networks under SYN-flood attacks. We have 

used five different scenarios. Scenario 1 doesn't have 

any attack-node. This scenario is used to measure the 

AODV routing protocol's performance in normal 

conditions. There is one SYN-flood attack-node in 

simulation scenario -1, two in simulation scenario -2, 

three in simulation scenario -3, and four in simulation 

scenario -4, respectively. All other significant 

properties are the same for all the simulation 

scenarios. The mobility of attack nodes in simulation 

scenario -1 to simulation scenario -4 is fixed. The 

wireless sensors form an ad-hoc network using the 

AODV as a routing protocol. All the malicious nodes 

can put themselves in the ad-hoc link created. 

 

Figure 3 shows simulation scenario -0, where there is 

no attack-node or sensor. This scenario is used to 

access the network's performance when there is no 

malicious sensor placed in it.  Simulation scenario -1 

is shown in Figure 4 which has one malicious sensor. 

The sensor exploits the vulnerability of the network 

to carry out SYN-flood attacks on the IoT network. 

Similarly, we have Figure 5, Figure 6, and Figure 7 

showing simulation scenario -2, simulation scenario -

3, and simulation scenario -4, respectively. 

 

Each simulation scenario has different numbers of 

attack-nodes or sensors. simulation scenario -2, 

simulation scenario -3, and simulation scenario -4 

have two, three, and four counts of malicious or 

attacking sensors, respectively. 

 

As mentioned in Figure 2, we carried out simulations 

to measure various network performance metrics like 

throughput, delay, and jitter. The throughput of the 

given system is the number of packets received by 

the receivers in a unit of time. We can express the 

same mathematically as follows: 

                
                           

           
  (1) 

 

In Equation 1, the numerator 

(∑number_of_packets_received)  represents the total 

number of packets received by the IoT network. In 

other terms, it equals the number of packets 

successfully delivered to their intended destinations. 
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The denominator (total_time) represents the total 

transmission time for these packets. It measures the 

time between the beginning of the transmission and 

the reception of the final payload. 

 

Table 6 Simulation scenarios 

S. No. Scenario name LoWPAN gateway 

properties  

Wireless 

sensor 

properties 

Router 

properties 

wired node 

properties 

No. of attack 

(SYN-flood) 

node 

1 simulation 

scenario -0 

 

 

 

 

Same as table 2 

 

 

 

 

Same as table 3 

 

 

 

 

Same as table 4 

 

 

 

 

Same as table 5 

0 

2 simulation 

scenario -1 

1 

3 simulation 

scenario -2 

2 

4 simulation 

scenario -3 

3 

5 simulation 

scenario -4 

4 

 

     
Figure 3 Simulation scenario -0 with no attack-node       Figure 4 Simulation scenario -1 with one attack-node  

 

      
Figure 5 Simulation scenario -2 with two attack-nodes      Figure 6 Simulation scenario -3 with three attack- nodes  
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Figure 7 Simulation scenario -4 with four attack-node 

 

To calculate the throughput, we add the total number 

of received packets and divide it by the total time. 

This ratio indicates the rate of data transfer or 

throughput by providing the average number of 

messages received per unit of time. Using Equation 

1, we can evaluate the effectiveness and functionality 

of an IoT network. A higher throughput value 

indicates that the network can handle and transmit a 

greater volume of data more rapidly. A lower 

throughput, on the other hand, may indicate network 

congestion, packet loss, or delays in data 

transmission. The nodal delay is the amount of time it 

takes for a data payload to traverse a single network 

node. The nodal delay can be mathematically 

expressed as follows (Equation 2):  

       
                                                    

     (2) 

Several factors contribute to this delay, which can be 

broken down into four components: queuing delay, 

processing delay, transmission delay, and 

propagation delay. Queuing delay refers to the 

amount of time a message spends in a queue before it 

can be processed by the node. Multiple packets may 

arrive simultaneously in an IoT network, and if the 

node is processing other packets, the inbound packets 

must wait in a queue. The queuing delay depends on 

the network's congestion level and the priority 

assigned to various packets. 

 

Processing delay represents the time needed to 

process the transmission by the node. In an IoT 

network, the processing delay may entail tasks such 

as analyzing the packet's content, performing any 

necessary computations, and making decisions based 

on the received data. The processing delay is 

determined by the complexity of the processing 

duties and the capabilities of the node's hardware and 

software. 

 

Transmission delay refers to the time required to 

transmit the payload from the source node to the 

destination node over the network link. It depends on 

the magnitude of the packet and the network link's 

available bandwidth. In an IoT network, factors such 

as the distance between nodes, the quality of the 

wireless connection, and network congestion can 

affect the transmission delay. 

 

Propagation delay represents the time it takes for a 

signal or packet to travel from a node to its 

destination owing to the physical properties of the 

communication medium. In an IoT network, the 

propagation delay depends on factors such as the 

distance between nodes and the pace at which the 

signal propagates through the medium (e.g., radio 

waves in wireless networks or light waves in optical 

networks). Understanding and optimizing these 

components of nodal delay Equation 2 is necessary 

for designing and managing IoT networks to ensure 

efficient data transmission, minimal delay, and 

dependable device-to-device communication. 

 

The variance in packet delay is referred to as jitter. 

Jitter for any packet is equal to the difference 

between the current packet's end-to-end delay and the 

prior packet's end-to-end delay. Jitter for any packet 

can be expressed as follows (Equation 3): 

                                         

                                  (3) 

 

Where ǰ_packet1 represents the time at which packet 

1 arrived at its destination and ǰ_packet2 represents 

the time at which packet 2 arrived at its destination. 

To calculate jitter using Equation 3, we must measure 
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the arrival times of multiple packets at the destination 

and then determine the absolute difference in arrival 

times between consecutive packets. This absolute 

difference provides the jitter value, which indicates 

how much the arrival times of individual packets 

vary. 

 

The average packet-jitter for the complete application 

can express as follows: 

                      
        

                          
  

 (4) 

 

Where   ǰ(pacentire-applicaion) represents the average packet 

jitter for the complete application. In other words, 

Equation 4 measures the average delay or time 

required for a packet to propagate within an IoT 

network from its source to its destination.          

represents the aggregate of the individual 

transmission delays. It indicates that we must 

calculate the sum of the latencies for each of the sent 

packets. ∑                          represents the 

total number of received packets that were delivered 

successfully to their destination. It implies that we 

must calculate the total number of packets that the 

intended recipient effectively received. The 

subtraction of 1 is intended to eliminate the first 

packet from the calculation. This may be done to 

exclude any initialization or setup time that may 

distort the delay measurement. Additional 

performance indicators like idle-state energy 

consumption of the number of half-open connections 

and overhead transmitted in wireless sensors are also 

measured. Half-open connections are created as a 

result of the SYN-flood attack. SYN-flood creates 

numerous half-open connections. These half-open 

connections seize available ports of the target node 

resulting in the exhaustion of the node's capacity to 

address genuine requests. Overhead transmitted is the 

total number of control overheads required to send 

packets and maintain a link. A wireless sensor is idle 

when it is not part of any active transmission or 

receiving of packets. 

  

4.Results 
Figure 8 shows a box analysis of throughputs under 

different attack scenarios. For simulation scenario -0, 

the median is 0.0101, the mean is 0.010047 and there 

are few outliers. For simulation scenario -1, the 

median is 0.008885, the mean is 0.009136 and there 

are no outliers. For simulation scenario -2, the 

median is 0.008763, the mean is 0.008763and there 

are no outliers, for simulation scenario -3, the median 

is 0.008377, the mean is 0.008377 and there are no 

outliers. Similarly, for simulation scenario -4, the 

median is 0.00826, the mean is 0.00826 and there are 

no outliers. We can observe that both the median and 

mean is decreasing for each simulation case 

indicating the number of attack sensors have impact 

on the performance of the network. 

 

 
Figure 8 Average throughput (in Mbps) in various attack scenarios 

Figure 9 shows the box plot presentation of the 

delays in the network caused by the attack sensors. 

We can observe that the median and mean of the 

delay also increase as the number of attack sensors 

increases in the simulation scenarios. The standard 

deviation of the delay values for each situation can be 

used to find out how different the values in the table 

are. The standard deviation is a way to measure how 
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spread out or variable a set of data is. Based on the 

table's delay numbers, here are the standard 

deviations for each attack scenario: simulation 

scenario -0: 0.065E+7, Simulation scenario -1: 

0.156E+7, Simulation scenario -2: 0.124E+7, 

Simulation scenario -3: 0.087E+7 and Simulation 

scenario -4: 0.092E+7. Here all the values are in 

Micro Sec. These numbers show that the delay values 

vary in different ways depending on the type of 

attack. Simulation scenario -1 has the biggest 

standard deviation, which means that the delay values 

are more spread out and have a wider range. 

Simulation scenario -0, on the other hand, has the 

smallest standard deviation, which means that the 

delay numbers are closer to the mean. 

 

 
Figure 9 Average delay (in Micro Sec.) in various attack scenarios 

 

Figure 10 based on the box plots shows a comparison 

of jitters under different attack scenarios. We can see 

that the distribution of jitter values in each attack 

situation (Simulation scenario -0 to Simulation 

scenario -4) is right-skewed with some outliers. The 

straight line in each box shows what the median 

number is. The boxes themselves show the 

interquartile range (IQR), which has 50% of the data. 

The whiskers go from the box to the minimum and 

highest values that are within 1.5 times the IQR. 

values outside of the whiskers are called "outliers." 

 

 
Figure 10 Average jitter (in Micro Sec.) in various attack scenarios 

 



Abhijit Biswas et al. 

922 

 

In Scenario (Simulation)-0, the data are a little bit 

clumped together, with a few outliers. About 67,000 

microseconds is the average amount of jitter. 

Simulation scenario -1 has a slightly larger spread of 

values, with a median of about 77,000 microseconds 

and a few outliers. Simulation scenario -2 has a wider 

spread of values, with a median of about 80,000 

microseconds. Scenario (Simulation) 3 has the most 

different numbers, with an average of about 85,000 

microseconds. Simulation scenario -4 also has a wide 

range of numbers, with the average being about 

87,000 microseconds. We can see that as the attack 

cases get worse (i.e., move from Simulation scenario 

-0 to Simulation scenario -4), the jitter values tend to 

go up, which means that there is more variation in 

how long it takes for packets to be sent. 

 

Figure 11 display the number of half-open 

connections generated in response to various attack 

scenarios and time intervals. Each row represents a 

sensor number, while each column represents a time 

interval in seconds during which the number of half-

open connections is recorded. 

 

At 10 seconds, for sensor number 2 in Simulation 

scenario -1, a total of 20,017 half-open connections 

were created. Similarly, at 90 seconds for simulation 

scenario -2, 99,901 half-open connections were 

created for sensor number 10. The number of half-

open connections can indicate how many connections 

to the target system are being established but not yet 

concluded. This can be an important metric for 

evaluating the impact of an attack on a system's 

availability. The table demonstrates that as the 

severity of the attack scenario increases from 

Simulation scenario -1 to Simulation scenario -4), the 

number of half-open connections increases. In 

addition, as time passes, the number of half-open 

connections for every scenario and sensor increases. 

 

 
Figure 11 Number of half-open connections created in various attack scenarios 

 

Figure 12 shows energy consumption by sensors in 

an idle state in various attack scenarios. The table and 

the figure indicate that as the number of attack nodes 

increases, so does the average energy consumption of 

the sensors in the idle state. The average energy 

consumption drops to 938.49 mj when there are no 

attack nodes. When one attack node is present, the 

average energy consumption rises to 1013.1 mj. It 

increases to 1052.21 mj when two attack nodes are 

present. The energy consumption continues to rise 

with values of 1060.12 mj and 1068.02 mj for three 

and four attack nodes, respectively. This suggests that 

the presence of attack nodes has a significant effect 

on the energy consumption of sensors in an inactive 

state, with a greater number of attack nodes resulting 

in a higher energy consumption. This can have 

significant implications for the design and operation 

of sensor networks, as increased energy consumption 

can reduce sensor lifetimes and network 

dependability. 
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Figure 12 Energy consumption by sensors in idle state in various attack 

 

As shown in Figure 13, the transmitted overhead 

increases as the number of attack nodes rises. The 

average overhead transmitted when there are no 

attack nodes is 683,590 bytes. When four attack 

nodes are present, however, the average overhead 

transmitted increases to 3,399,348 bytes. This 

increase in transmitted overhead is likely due to the 

increased communication requirements between 

sensors and attack nodes. The attack nodes may be 

transmitting additional packets to the sensors to 

disrupt the network. This additional communication 

creates additional overhead and can negatively 

influence the network's overall performance. 

 

 
Figure 13 Overhead transmitted in various attack scenarios 

 

5.Discussions 
This study explores the consequences of SYN-flood 

attacks on IoT networks and establishes the 

possibility of such attacks in IoT networks. In an 

SYN-flood attack, a malicious node maliciously 

requests a connection establishment with a genuine 

wireless sensor. However, the malicious node does 

not reply to the SYN message from the wireless 

sensor, thereby keeping the connection half-open. 

The malicious node then creates a large number of 

half-open connections with other wireless sensors in 

the network in a similar manner. Due to these half-

open connections between the genuine wireless 

sensors and the malicious node, other legitimate 

sensor nodes are unable to establish connections with 

the compromised sensor. This results in service 

deprivation or denial. Table 6 presents the simulation 

scenarios used in our investigation. Simulation 

scenario -0 has no attack nodes, while Simulation 

scenario -1 has one SYN-flood attack node. 

Similarly, Simulation scenario -2, Simulation 

scenario -3, and Simulation scenario -4 have two, 

three, and four SYN-flood attack nodes respectively. 

Figure 8 demonstrates the effects of different 

numbers of SYN-flood attack nodes on IoT networks 

in terms of throughput. Throughput is calculated 
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using Equation 1. The existence of attack nodes 

negatively affects the throughput. The graphic clearly 

illustrates a significant drop in the throughput of IoT 

networks due to the presence of malicious nodes in 

various simulated scenarios. Additionally, the mean 

and median of the throughputs of all wireless sensors 

decrease as a result of the attack. 

 

Table 7 compares the effect of SYN-flood attacks on 

overhead transmission (in MB) in IoT networks with 

other network types [65].We observe that the 

overhead transmission for IoT networks due to SYN-

flood attacks is higher compared to other networks 

under similar attacks. This situation is concerning 

because IoT networks typically have lower 

bandwidth than other networks. 

 

Figure 9 indicates the influence of SYN-flood attacks 

on network delay. The genuine sensor nodes require 

multiple attempts to establish connections due to the 

presence of unsolicited SYN-flood packets in the 

network. Consequently, the overall delay for the 

network, as well as for individual sensors, increases. 

Delay is calculated using Equation 2. The trend of 

increased delay is evident in Table 8. From Figure 8, 

we can easily observe that the mean and median 

delay for the sensors increase in successive 

simulation scenarios. 

 

The presence of malicious SYN-flood attack nodes in 

the IoT network affects the network's jitter. The 

attack leads to higher jitters in the network, as 

observed in Figure 10. Jitter is calculated using 

Equation 3 and Equation 4. The SYN-flood attack 

nodes significantly reduce the performance of the 

network by drastically increasing the jitter in every 

simulation scenario. 

 

Figure 11 shows the number of half-open 

connections opened by the SYN-flood attack nodes. 

The figure illustrates a significant increase in half-

open connections every second, and the rate of 

creation of half-open connections is higher in 

scenarios with a higher number of attack nodes. 

 

The idle state energy consumption of each wireless 

sensor is shown in Figure 12. The attack nodes 

constantly attempt to send fake connection requests 

to genuine sensors. Although there is no actual data 

communication between them, the connections 

remain half-open. As a result, the wireless sensors 

spend their precious battery life listening to the 

communication channel, leading to decreased power 

levels even in an idle state. 

Figure 13 demonstrates the overhead transmitted in 

various simulation scenarios. The overhead packets 

are responsible for maintaining the network. Due to 

the attack, the overhead transmission increases 

tremendously, resulting in higher congestion in the 

network. This, in turn, increases the delay and jitter 

of the network, thereby reducing the throughput. 

 

Table 8 compares the effect of SYN-flood attacks in 

delay (Millisec.) in IoT networks and other network 

types [65]. The effect of SYN-flood attacks on delay 

in IoT networks and other network types is displayed 

in Table 8. SYN-flood attacks are a form of DoS 

attack that exploits the TCP three-way handshake 

vulnerability. A large number of SYN packets are 

sent to the target server in this type of attack, but the 

perpetrator does not complete the handshake, leaving 

the server waiting for a response. The table 

demonstrates that as the number of attack-nodes 

increases, so does the delay in IoT networks. When 

there are no attack-nodes, for instance, the delay in 

IoT networks is 46,000 milliseconds. However, the 

delay increases to 46500 milliseconds with one 

attack-node and 47500 milliseconds with four attack-

nodes. This implies that the greater the number of 

attack-nodes in an IoT network, the greater the delay 

caused by SYN-flood attacks. 

 

The table also compares the impact of SYN-flood 

attacks on delay in IoT networks with the effect of 

blackhole attacks on delay. The blackhole attack is a 

method of redirecting attack traffic to a "blackhole" 

or null interface. The null interface discards all 

incoming packets, effectively preventing attack 

traffic from reaching its destination. As shown in the 

table, the delay in IoT networks subject to a 

blackhole attack is considerably less than the delay in 

IoT networks subject to a SYN flood attack. For 

instance, the delay in IoT networks without a black 

hole attack node is 58 milliseconds, whereas, with 

one, the delay is only 65 milliseconds. This implies 

that SYN deluge attacks are more damaging than 

blackhole attacks. 

 

The table also contrasts the delay caused by SYN-

flood attacks in 5G mmWave networks with and 

without the Round Robin and Proportionally Fair 

scheduling algorithms. The Round Robin algorithm 

allocates resources equally to all users, whereas the 

Proportional Fair algorithm prioritizes users with 

poor channel conditions to enhance the quality of 

service. The delay in 5G mmWave networks with the 

Round Robin scheduling algorithm is greater than the 

delay with the Proportional Fair scheduling 
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algorithm, as shown in the table. For example, with 

four attack-nodes, the Round Robin scheduling 

algorithm incurs a delay of 2245.411 milliseconds, 

whereas the Proportional Fair scheduling algorithm 

incurs a delay of only 2240.051 milliseconds. This 

indicates that the Proportional Fair scheduling 

algorithm is more effective at reducing the impact of 

SYN-flood attacks on delay in 5G mmWave 

networks. In conclusion, the table provides insightful 

information regarding the effect of SYN-flood 

attacks on delay in various network types. These 

insights can assist network administrators and 

security experts in developing effective strategies to 

defend IoT networks against SYN-flood attacks. The 

effect of SYN-flood attacks on jitter in IoT networks 

and other network types is displayed in Table 9. Jitter 

is the variation in network delay between packets, 

and it is a crucial performance metric for real-time 

applications. Jitter increases as the number of attack 

nodes increases, indicating a decline in network 

performance. The table demonstrates that the SYN-

flood attack has a considerable impact on the jitter in 

an IoT network, with the jitter increasing from 70.8 

milliseconds to 87.0 milliseconds as the number of 

attack nodes increases from 0 to 4. This indicates that 

the attack causes a substantial variation in the delay 

between packets, which can have a negative impact 

on the performance of real-time applications. 

 

In contrast, SYN-flood attacks in 5G millimeter wave 

(mmWave) networks employing Round Robin and 

Proportional Fair algorithms have a significantly 

lesser impact on jitter. As the number of attack nodes 

increases from 0 to 4, the jitter increases from 5.19 to 

8.37 milliseconds. This suggests that these networks 

are more resistant to SYN-flood attacks and more 

suitable for real-time applications. Overall, the table 

emphasizes the significance of network resilience and 

the need to evaluate the impact of security attacks on 

network performance using various performance 

metrics, such as delay and jitter. In addition, it 

emphasizes the need for comprehensive security 

mechanisms in IoT networks to mitigate the 

performance impact of attacks. 

 

Table 7 Effect of SYN flood attacks in overhead transmission (in MB) in IoT networks and other networks 
No. of attack-nodes SYN attack in IoT 

network  

Blackhole attack No. of attack-nodes SYN attack in IoT 

network  

0 0.683 0.70 0.683 0.63 

1 3.11 2.8 3.10 3.14 

2 3.26 N.A 3.25 3.21 

3 3.36 N.A 3.36 3.31 

4 3.40 N.A 4.40 3.38 

 

Table 8 Effect of SYN-flood attacks in delay (Millisec.) in IoT networks and other network types 
No. of attack-nodes SYN attack in IoT 

network  

Blackhole attack  

in IoT network 

SYN attack with Round 

Robin algo. in 5G 

mmWave network  

SYN attack with 

proportional fair algo. in 

5G mmWave network  

0 46000 58 2156.647 2142.647 

1 46500 65 2190.939 2175.939 

2 46800 N.A 2227.517 2180.534 

3 47100 N.A 2234.770 2234.770 

4 47500 N.A 2245.411 2240.051 

 

Table 9 Effect of SYN-flood attacks in jitter (Millisec.) IoT networks and other network types 
No. of attack-nodes SYN attack in IoT network SYN attack with Round Robin 

algo. in 5G mmWave network  

SYN attack with proportional 

fair algo. in 5G mmWave 

network  

0 70.8 5.19 5.23 

1 77.2 5.36 5.36 

2 80.5 6.74 6.88 

3 84.8 7.45 7.44 

4 87.0 8.33 8.37 

Our investigation's critical evaluations are as follows: 

1. An IoT network framework has vulnerabilities that 

attackers can exploit. Our team exploited one of 

these flaws to launch an SYN-flood attack. When 

an SYN packet arrives at wireless sensors, a 

compromised IoT network creates half-open 

connections. When other sensors send a series of 

SYN packets to the compromised sensor, it opens 

numerous connections without sending any data. 

Consequently, the attack consumes all available 

resources, preventing genuine service connections. 
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2. The average throughput of the IoT network has 

significantly decreased. As the number of attack 

nodes increases, the drop in throughput becomes 

more pronounced. In various attack scenarios, the 

attack results in a 9.1% to 17.79% decrease in 

throughput. 

3. There is a slight increase in network delay due to 

the attack. In various attack scenarios, the attack 

leads to a 1.08% to 3.26% increase in delay. 

4. The SYN-flood attack type causes an increase in 

network jitter. The attack results in a 15.4% to 

22.88% increase in network jitter. 

5. The attack results in an increased number of half-

open connections, leading to the exhaustion of 

available ports. This port exhaustion deprives 

genuine nodes of connections. Additionally, the 

excessive number of half-open connections 

requires a higher number of overhead 

transmissions, resulting in increased traffic and 

congestion in the network. 

6. The attack has resulted in increased energy 

consumption by sensors in an idle state in various 

attack scenarios. 

 

5.1 Limitations 

 The attacking sensors can easily degrade the 

performance of the network. However, if the 

attacking node wishes to attack a specific sensor, it 

must be aware of the network of the target node. 

Therefore, the attacking sensor must be mindful of 

the neighbourhood of the target user equipment. 

 Continuously transmitting packets (SYN) causes a 

high battery drain. Therefore, the duration of the 

attack is dependent on the power source (battery) 

of the attacking sensor. 

 

A complete list of abbreviations is shown in 

Appendix I. 

 

6. Conclusion and future work 
The existence of a vulnerability was demonstrated in 

this paper in IoT networks that utilized the AODV 

protocol as their routing protocol. This vulnerability 

resided in the transport layer of the IoT network 

framework, enabling it to be exploited by intruders to 

create multiple half-open connections. Exploiting this 

vulnerability allowed intruders to launch SYN-flood 

attacks, which had a severe impact on the network's 

performance. The SYN-flood attack leads to 

deteriorated performance metrics, including increased 

delay and jitter, as well as decreased throughput. 

Specifically, the attack resulted in a decrease in 

throughput ranging from 9.1% to 17.79%, an increase 

in delay ranging from 1.08% to 3.26%, and an 

increase in jitter ranging from 15.4% to 22.88% 

within the network. Additionally, the attack increased 

energy consumption for idle wireless sensors and 

significantly raised overhead transmissions due to the 

increased number of half-open connections resulting 

from the SYN-flood attack.  

 

In future research, methods for mitigating the impact 

of SYN-flood attacks in IoT networks will be 

investigated. Additionally, there is a plan to develop 

an intrusion detection system specifically tailored for 

detecting and eliminating such attacks in IoT-based 

networks. This will involve the utilization of machine 

learning and deep learning techniques.  
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Appendix I 
S. No. Abbreviation  Description 

1 5G Fifth Generation 

2 ACK Acknowledgement 

3 AODV Ad-hoc On-Demand Distance Vector 

4 ARP Address Resolution Protocol 

5 BGP Border Gateway Protocol 

6 DDoS Distributed Denial of Service 

7 DNS Domain Name System 

8 DoS Denial-of-Service 

9 DSR Dynamic Source Routing 

10 ID Identifier 

11 IEEE Institute of Electrical and Electronics 

Engineers 

12 IP Internet Protocol 

13 IPv6  Internet Protocol Version 6 

14 IQR Interquartile Range 

15 IoT Internet of Things 

16 ISS Initial Sequence Number 

17 LoWPAN Low Power Personal Area Network 

18 MAC Media Access Control 

19 MANETs Mobile ad-hoc Networks  

20 MITM Man-in-the-Middle 

21 MQTT Message Queuing Telemetry Transport 

22 OSPF Open Shortest Path First 

23 O-QPSK Offset Quadrature Phase-Shift Keying  

24 PDR Packet Delivery Ratio 

25 RPL Routing Protocol for Low-Power and 
Lossy Networks 

26 RREQ Route Request 

27 RREP Route Reply 

28 RF Radio Frequency 

29 SDN Software-Defined Networking 

30 SPO2 Oxygen Saturation 

31 SQL Structured Query Language 

32 SYN  Synchronization  

33 TCB TCP Control Block 

34 TCP Transmission Control Protocol 

35 UDP User Datagram Protocol 

36 VANET Vehicular Ad hoc Networks 

37 WOA Web-Oriented Architecture  

38 XML eXtensible Markup Language 

 

 

 

 

 


