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1.Introduction 
Two-dimensional (2-D) discrete systems (DSs) have 

been extensively used in control systems, optical 

fibre networks, river pollution modelling, geophysics, 

speech processing, etc. [1–4]. As a result, over the 

last few decades, there has been a lot of interest in 

studying the stability properties of such systems. In 

the hardware realization of DSs on finite word length 

machines (e.g., microcontrollers, special-purpose 

digital hardware and digital signal processers, etc.), 

overflow and quantization nonlinearities are 

inevitable. Such nonlinearities in DSs may result in 

oscillations and instability [5–8]. The commonly 

employed overflow correction schemes in DSs are 2's 

complement, saturation, triangular and zeroing. Many 

problems have been studied in the literature to 

examine the global asymptotic stability (GAS) of 2-D 

DSs with overflow [9–13].  

 

Another source of system instability and poor 

performance is time delay. It may frequently occur in 

realistic systems owing to transmission delays, 

measurement delays, computational delays, etc. The 

presence of delay in practical systems may cause 

undesired transient responses and, thus, lead the 

system towards instability [9, 13–22]. 

 

 
*Author for correspondence 

As a result, investigating the GAS of 2-D DSs 

employing time-varying delays (TVDs) is an 

important research topic. Several authors have paid 

attention to the problem of GAS in 2-D delayed DSs 

[15–17, 19–21]. 

 

Parameter uncertainties may emerge in practical 

systems as a result of changes in system parameters, 

modelling errors, or other issues that are ignored. 

These uncertainties may cause the implemented 

system to become unstable. Several works on the 

stability of 2-D DSs with parameter uncertainties 

have been reported [15, 17, 19, 21]. 

 

While obtaining delay-dependent stability criteria for 

DSs, several methods (e.g., free weighting matrix 

(FWM) method, inequality-based method, etc.) have 

been accounted for in handling the sum terms present 

in the forward difference of the Lyapunov-Krasovskii 

function (LKF). The FWM method makes the criteria 

more complex by introducing free matrix variables 

into the system analysis. The sum term is solved by 

employing well-known inequalities (such as 

reciprocal convex inequality (RCI) [23], Jensen 

inequality (JI) [24] and Wirtinger-based inequality 

(WBI) [25]) in the inequality-based method. The RCI 

is a lower bounded lemma for a linear combination of 

positive functions, where the coefficients are the 

inverses of convex parameters. This lemma may aid 

Research Article 
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in the reduction of decision variables as well as 

conservatism [23, 25]. The criteria achieved by 

employing the WBI are generally less stringent than 

those achieved via JI [26]. Nevertheless, there is still 

an enormous scope to improve the results reported in 

[23, 26–28]. 

 

The task of designing 2-D DSs preserving the GAS is 

an appealing problem. The GAS problem of 2-D 

Roesser model [29] has been studied [2, 9, 11, 17, 

20]. The stability criteria of 2-D DSs in the 

Fornasini-Marchesini second local state space 

(FMSLSS) model have been reported in [30]. In [9, 

31], the stability problem of 2-D delayed systems 

using saturation nonlinearities (SNL) has been 

explored. The stability problem of uncertain 2-D 

delayed systems with SNL has not been investigated 

so far, to the best of our awareness.  

 

1. For 2-D DSs under the combined influence of 

TVDs, uncertainties and SNL, the linear matrix 

inequality (LMI) based stability criterion is 

provided. 

2. To estimate the sum terms in the forward 

difference of the LKF, the WBI technique is 

combined with RCI. 

3. Further, a new stability criterion is proposed in 

corollary, which yields more relaxed outcomes 

than the previous criterion [9]. 

 

The paper is prepared as follows. Section 1 gives the 

introduction, a description of the system and some 

relevant preliminaries. The previous studies in the 

literature that are related to the present study are 

reviewed in section 2. A new GAS criterion for 2-D 

DSs under the combined influence of TVDs, 

uncertainties and SNL is presented in section 3. 

Further, a new criterion is provided as a corollary that 

does not take into account the influence of 

uncertainty in 2-D DSs. Section 4 demonstrates the 

superiority of the obtained results by using two 

examples. Section 5 deals with the discussion of the 

proposed results. Finally, a conclusion is provided in 

section 6. 

 

Notations: In this paper,   ( ) 0 0  stands for A 

is a symmetric negative definite (positive definite) 

matrix;   0  indicates that A is a symmetric 

positive semidefinite matrix;  1  2   refers to the 

matrix 
 1

 2

;
 
 
 

0

0




     denotes the p -dimensional 

Euclidean space;       is the real set of p q  

matrices; 0  and I are the null and identity matrices of 

appropriate dimension, respectively; sup  is the 

supremum of a set;   is any vector or matrix norm; 

 
 

stands for the nearest integer to  ;  diag

 1 2ð ,  ð ,  ...,  ðn
 is a diagonal matrix in which

1 2ð ,  ð ,  ...,  ðn  are diagonal elements; Z is the set of 

non-negative integers; * refers to the symmetric 

terms in a symmetric matrix. 

 

1.1System description  

This paper considers the 2-D DSs (based on the 

Roesser model [29]) with uncertainties, TVDs and 

SNL. The underlying system is given by Equations 

1a-1e:  
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where Z    and  Z   are the horizontal and 

vertical spatial coordinates, respectively.         
    and             are the state vectors in 

horizontal direction (HD) and vertical direction (VD), 

respectively. The         
                

 

               
       and         

       are 

the known coefficient matrices. The           
 

                
                  

       

and           
      are the unknown matrices 

and ( )f   represents the SNL. The ( )hd   and 

( )vd   are TVDs in HD and VD, respectively [9, 

17]. The TVDs are assumed to satisfy Equation 2. 

    
              

         
   

           
        

(2) 

 
Where 

1
hd     lower delay bound along HD, 

2
hd     upper delay bound along HD, 

1
vd     lower delay bound along VD, 

2
vd     upper delay bound along VD. 

 

The ( ( , ))h h
i if      and ( ( , ))v v

i if     representing 

the SNL along HD and VD, are given by Equation 3a 

and Equation 3b, respectively. 

  
    

        {

  
           |  

      |    

                   
         

                    
          

 

1, 2, ..., ,i    m     (3a) 

  
    

        {

  
           |  

      |    

                   
         

                    
          

 

1, 2, ..., .i    n     (3b) 

 

The norm-bounded uncertainties are assumed in the 

form of Equations 4a-4c: 

                         (4a) 

Where 

   [
   
 

   
 ]    

           
                     

     (4b) 

   [   
     

 ]   
            

                  

     (4c) 

are known. The unknown matrix          satisfies 

Equation 4d. 

  
                   (4d) 

 

The system is assumed to have a finite set of 

boundary conditions [9], i.e., there are scalars M > 0 

and N > 0 satisfying Equation 5.  

                               
        

                         
       

                               
       

                        
       

00 00.  ñ     (5) 

 

It is worth noting that Equations 1-5 cover a broad 

range of 2-D practical uncertain systems with TVDs 

and SNL. Such systems cover 2-D control systems 

[32] with SNL [16], 2-D DSs employed on a digital 

signal processor [33], wireless sensor networks [34], 

vehicle control systems [35], networked control 

systems [36], etc. 

 

The purpose of this work is to examine the GAS of 2-

D DS given by Equations 1-5 and to derive a more 

relaxed criterion by utilizing WBI along with RCI. 

 

1.2Preliminaries  

In this subsection, we recall the following definition 

and lemmas. 

Definition [9]: The system in Equation 1 is globally 

asymptotically stable if lim 0


  for all boundary 

conditions belonging to Equation 5, where   is 

represented by Equation 6. 

( , )
sup : , , 1 .

( , )

h

v

 
 

 

 
   

 

   
      

    




(6) 

Lemma 1 [25]: Let a matrix  0T  and , ,a  b    are 

integers fulfilling 0b a    , if ( , , ) a  b is 

represented as Equation 7a  

1
1

2 ( ) ( ) ( ) , ,
( , , )

2 ( ), ,

a

s b

s a b  a b
 a  b b a

a                                                    a b





 




 

 

   
        

       
 


  



     (7a) 

then the inequality given in Equations 7b-7e holds 

true. 

T1
0 0T

1 1

( ) ( ) ( ) ,
3

a
  

  s b

b a s s





 

 

    
       

    


0

0

 
 

 

T
T

T

     (7b) 

Where 

( ) ( 1) ( ),s s s       (7c) 

0 ( ) ( ), a b         (7d) 

1 ( ) ( ) ( , , ). a b  a  b          (7e) 
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Here, 0   is the mean value gained by ( )  over [a, 

b]. 1   is the difference between the mean value of 

( )  and its average over [a, b]. 

 

Lemma 2 [23]: For any vectors 1 2, ,    matrices 

,  R N and non-negative scalars 1 2,    satisfying 

Equation 8a and Equation 8b, 

1 2 1, , 
 

   
 

0
*

R N

R
  (8a)

if 0 ( 1, 2)i i       i     0   (8b) 

then the inequality shown in Equation 8c is satisfied. 
T

1 1T T
1 1 2 2

2 21 2

1 1
.

 

    
        

    *

R N
R R

R

 
   

 
 

     (8c) 

Lemma 3 [37]: Suppose      and   be real 

matrices with   fulfilling T  . Then, the 

inequality given by Equation 9a holds true:  

                 (9a)           

        iff there exists a scalar 0 satisfying 

Equation 9b. 

1 T T .    0       (9b) 

 

2.Literature review  
In the last few decades, 2-D systems have been 

widely used in many research fields. In [38], the 

stability of 2-D DS in FMSLSS model subject to 

exogenous nonlinear disturbances has been 

considered. The design of robust controller for 2-D 

Markovian jump systems with uncertainties has been 

discussed in [39]. Stability analysis of systems with 

TVDs and generalized overflow nonlinearities has 

been studied in [40]. An investigation of local control 

schemes for 2-D nonlinear DSs in Roesser model has 

been done in [41]. The problem of GAS of 2-D 

digital filters based on the FMSLSS model with 

saturation has been investigated in [11]. Stability 

conditions for 2-D linear shift invariant DSs has been 

reported in [42]. The problems of establishing L2 gain 

and structural stability of the mixed 2-D continuous-

DSs have been discussed in [43]. The problem of 

ensuring stability for mixed 2-D continuous-DSs has 

been addressed in [44]. The structural stability of the 

continuous-discrete fractional-order 2-D Roesser 

model is investigated in [45]. The exponential 

stability of continuous descriptor systems based on 2-

D Roesser model has been examined in [46]. The H  

stability of 2-D Roesser-like continuous delayed 

systems has been investigated in [47]. Using Takagi-

Sugeno fuzzy models, [48] has investigated the 

controller design problem for 2-D nonlinear systems.  

 

In the existing literature, the sum terms in the 

forward difference of the LKF have been handled 

using a variety of ways. The FWM technique 

generally yields computationally complex stability 

criterion. In the inequality-based technique, the sum 

terms in the forward difference of the LKF are 

generally handled by applying well-known 

inequalities, like the RCI method [23], the JI method 

[24] and the WBI method [25]. The criteria 

developed using the WBI approach are generally 

more relaxed than those obtained through the JI 

method [26]. 

 

The stability issues of 2-D DSs with TVDs have been 

investigated in [15−17]. The stability problem of 2-D 

delayed fuzzy systems given by the Roesser model 

has been considered in [49]. In [50], the stability 

problem for a class of 2-D DSs based on Roesser 

model with actuator saturation and TVDs has been 

discussed. The stability of delayed continuous-

discrete systems has been analysed in [51]. 

 

From the literature survey mentioned above, it is 

apparent that the stability analysis of DSs with 

uncertainties, FWN, and delays is an imperative and 

challenging problem. Although several results are 

presented in this area, there are still copious 

possibilities for improvement in terms of 

computational burden and/or conservativeness. 

 

3.Methods 
The following theorem provides a new methodology 

for testing GAS of the system given by Equations 1-

5. 

Theorem 1: For given integers  (  = 1, 2) ,  h v
i id id , 

fulfilling 
2 1 0h hd d   and

2 1 0 v vd d  , the GAS of 

the system represented by Equations 1-5 is assured if 

there exist matrices  

     [
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   [
   

    
 

   
    

 ]             

    [
   

    
 

   
    

 ]           and scalars 

                      

 ( ,   = 1, 2, ...,  +           )i j m n, i j  such that the 

inequalities shown in Equations 10a-11d hold true: 

, 

h h

h

 
 

  

0
*

T Y

T
    (10a)                                                                  

                                                                    

, 

v v

v

 
 

  

0
*

T Y

T
    (10b)                                                                       

1 1( ( ) , ( ) ) ,h h v vd d d d    0   (11a) 

2 1( ( ) , ( ) ) ,h h v vd d d d    0   (11b) 

 
1 2( ( ) , ( ) ) ,h h v vd d d d    0   (11c) 

2 2( ( ) , ( ) ) ,h h v vd d d d    0   (11d) 

where ( ( ),  ( ))h vd d  is given by Equation 12a 
T
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and the parameters in Equation 12a are given by 

Equations 12b-12w:   
3

T
11 1 2 2 1 4 3 18

1

(( ) / 2) 4 , = i

i

       W W W T H H

     (12b) 

15 1 4 2( ) / 2, W W    (12c) 

 16 2 5 3( ) / 2, W W    (12d) 

17 3 5 3( ) / 2, W W    (12e) 

2 2
18 1 1 4 2( ),  T T     (12f) 

T T T T
22 3 2 11 11 12 12 21 21 22 228 ,          H T Y Y Y Y Y Y Y Y   

(12g) 
T T T T

23 2 11 12 21 222 ,     T Y Y Y Y  (12h) 

24 2 11 12 21 222 ,     T Y Y Y Y   (12i) 

T T
26 2 21 223 ,  T Y Y    (12j) 

27 2 21 223 ,  T Y Y    (12k) 

34 11 12 21 22 ,   Y Y Y Y   (12l) 

T
35 1 5 4( ) / 2, W W     (12m)         

36 2 6 5( ) / 2, W W    (12n) 

37 3 6 5 12 22( ( ) / 2) ,    W W Y Y  (12o) 

T T
46 2 6 21 22/ 2) ,(     W Y Y   (12p) 

47 3 6 2/ 2) 3 ,(   W T    

     (12q) 

1 1 1{ , }, h vdiag d d    (12r) 

2 1 1{ ( ) , ( ) }, h h v vdiag d d d d     (12s) 

3 2 2{ ( ), ( )}, h h v vdiag d d d d     (12t) 

4 12 12{ , }, h vdiag d d    (12u)                                                                                                                     

2 2 2 23 , 3 , h h h v v v   T T T T T T    (12v)  

12 2 1 12 2 1, h h h v v vd d d d d d       (12w)                                                                                                     

and

 ( 1,  2,  ...,  6),  ( 1,  2, 3),  h v h v
i i i i i ii i     W W W H H H

  ( 1,  2),h v
i i i i  T T T 11 11 11,  h v Y Y Y
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12 12 12 ,h v Y Y Y

21 21 21 22 22 22,  .h v h v   Y Y Y Y Y Y  Here,   

[    ]                denotes a matrix defined by 

Equations 13a-13c [10]. 
( )

   

1,

( ), 1,  2,  ...,  ,  

m n

i i i j i j

j j i

c i m n 



 

     

     (13a)   

   ,   , ,  1,  2,  ...  ( ),    i j i j i jc i j m n i j     

     (13b)                                   

  0,   0, ,  1,  2,  ...,  ( ).    i j i j i j m n i j     

      (13c)  

Appendix III contains the proof of Theorem 1. 

 

Remark 1: Theorem 1 can be used to determine the 

GAS of a DS described by Equations 1-5. By 

selecting a suitable LKF along with the bounding 

techniques (WBI and RCI), delay-dependent LMI-

based stability conditions (Equations 10a-11d) are 

derived. The conditions in Theorem 1 are 

computationally tractable. The permitted delay range 

is generally used to determine how conservative a 

delay-dependent stability criterion is. To achieve less 

stringent stability results, the delay ranges in HD and 

VD should be as large as possible so that the GAS of 

the DS is ensured over the allowable delay ranges. 

 

Figure 1 depicts the flow chart for the proposed 

technique for a given 2-D DS. This flow chart 

accepts the system parameters (i.e., 

0 1 0 1 1 2 1 2, , , , , , , , ,h h v v
d d d d d    

X  X  P  P  Q  Q        of a given 2-D 

DS described by Equations 1-5) as input. Then, the 

validity of the GAS conditions in Theorem 1 are 

examined over the delay ranges   
           

   
    

              
  using MATLAB along 

with YALMIP 3.0 [37, 52]. If Theorem 1 leads to 

feasible solution for the considered system, the 

system becomes globally asymptotically stable over 

the given delay ranges. If Theorem 1 fails to provide 

feasible solution, no conclusion on the GAS can be 

drawn.  Though Figure 1 shows a flow chart for 2-D 

DSs with uncertainties, a flow chart for 2-D DSs 

without uncertainties can easily be conceived. 

          
Figure 1 Flow chart for the proposed method      
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Remark 2: The lessened conservatism obtained in 

this work is mainly due to the utilization of WBI with 
RCI, which bounds

2 ( ,  )h  S as shown in Equation 

14: 
2 ( ,  ) h   S  
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h h

h

 
 

  

0
*

T Y
.

T
 By considering h  0Y and 

2( ) ,h hd d   Equation 14 reduces to Equation 15. 

T

1 1
2

1 1 1 1

( ,  ) ( ( ),  ) ( ,  ) ( ( ),  )
( ,  ) .

( ,  ) ( ( ),  ) ( ,  , ( )) ( ,  ) ( ( ),  ) ( , ,  ( ))

h h h h h h h h
h h

h h h h h h h h h h h h

d d d d

d d d d d d d d

         
 

             

        
    

              
S T

   

   
(15)    

 By following Remark 6 [26] and Remark 1 [53], we 

have Equation 16:  
T

2 1( ,  ) ( ,  ) ( ( ),  )h h h h hd d           
 

S    

2 1( ,  ) ( ( ),  )h h h h hd d       
 

T    (16) 

 

which is identical to the condition obtained via JI. 

Thus, it may be concluded that Equation 15 is less 

conservative than that obtained by JI. 

 

Now, we have the following corollary as an outcome 

of Theorem 1. 

 

Corollary 1: Consider the 2-D DS (Equations 1-5) 

without uncertainties ( ),d    0X X  i.e., the 

system transforms to Equation 17. 

11( ,  ) ( ( ,  )),    f   

 (17a) 

( ,  ) ( ( ),  )
( ,  )   + .

( ,  ) ( ,  ( ))

h h h

dv v v

d

d

    
 

    

   
   

   
   

 X X
 

 

     (17b) 

Then, the system in Equation 17 is globally 

asymptotically stable if there exist 

 

[

  
   

   
 

   
   

 

    
 

]         

     [

  
   

   
 

   
   

 

    
 

]           

    
                   

    
                    

    
                  

    
                  

   [
   

    
 

   
    

 ]            

   [
   

    
 

   
    

 ]           and scalars 

  ,   ( ,   = 1, 2, ...,  +          )0 0i j i j i j m n, i j  < <  

satisfying Equation 10a, Equation 10b along with 

Equations 18a-18d: 

1 1( ( ) , ( ) )  ,h h v vd d d d    0   (18a)  

2 1( ( ) , ( ) )  ,h h v vd d d d    0   (18b) 

 
1 2( ( ) , ( ) )  ,h h v vd d d d    0   (18c) 

2 2( ( ) , ( ) )  ,h h v vd d d d    0   (18d) 

 

where ( ( ),  ( ))h vd d  is given by Equation 19. 

( ( ),  ( ))h vd d    
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T
1 18
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)

( /

(
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 W

W C C

(19) 

 

The proof of Corollary 1 is shown in Appendix I. 

 

4.Result 
Two examples are considered to exemplify the 

importance of the main findings. 

Example 1: Consider the 2-D DS described by 

Equations 1-5 along with Equations 20a-20d. 

0.6 0.32 0.1

0.19 0.25 0.54 ,

0.1 0.1 0.16

=

  
 
 
 
 

X    (20a) 

0.1 0.01 0.03

0.11 0.05 0.12 ,

0.02 0.06 0.15

d =

 
 

 
 
 

X     (20b) 

   0 1 0 1

0

0.1 ,  0.01 0 0, ,  0 0.01 0 , 

0.1

 
 

   
 
  

P P Q Q

     (20c) 

1 1 23,  2,  6.h v vd d d      (20d) 

This example was considered in [17] for the GAS 

analysis of uncertain 2-D DSs employing various 

combinations of quantization and overflow. Now, for 

this example, our aim is to obtain different set of 

values of 
2
hd  for a given distinct set of values of 

1
hd  

by iteratively solving the conditions presented in 

Theorem 1 w.r.t. 
2
hd . With the MATLAB software 

[37] along with YALMIP 3.0 [52], it is checked that 

Theorem 1 yields solutions for 
2 18hd  . Thus, the 

GAS of the considered system is assured over 

3 ( ) 18hd    and 2 ( ) 6vd   . 

With            , 
15sin 180 1 /( ) = 3 + ( ( ) |hd      and 

,4si( ) = 2 + (n 180 1 /( ) |vd      the trajectories 

of three state variables of the system given by 

Equation 1 are shown in Figure 2. The plots of TVDs 

( )hd   and ( )vd   are shown in Figure 3. For the 

state trajectories, we have selected the initial 

conditions as given in Equation 21a and Equation 

21b.

 

 
T

T

1 2

2 4 , 0 19, 0 18
( ,  ) ( ,  

 
) ( ,  )  

, 19

 

, ,

   

      18  0

h h h  
     

 

                0
  (21a) 

 

1

3, 0 19, 0 6
( ,  )  

0, 19, 0 6.

    

           

v  
 

 

     
  

   
 

     (21b) 

Figure 2 shows that the system trajectories tend 

toward the origin as ,    which is in 

accordance with the GAS of the system under study. 
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                         (a)                                                                                                  (b) 

 
(c) 

Figure 2 State trajectories of example 1 
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(a)                                                                                        (b) 

Figure 3 TVDs employed in the simulation for example 1 

 

Example 2: Consider the 2-D DS described by 

Equation 17 together with Equations 22a-22c. 

0.7 0.2 0.12

= 0.23 0.3 0.4 ,

0.14 0.1 0.17

  
 
 
 
 

X    (22a)  

0.09 0.01 0.02

= 0.13 0.06 0.1 ,

0.02 0.06 0.18

d

 
 

 
 
 

X     (22b) 

1 22,  6.v vd d      (22c) 

 

For some given values of
1
hd , the different values of

2
hd  obtained (which affirm the GAS of the 

considered system) are presented in Table 1. Table 1 

shows that, when compared to [9], Corollary 1 

produces a more relaxed result for the present 

example. The trajectories of three states of the system 

given by Equation 17 are shown in Figure 4. For the 

state trajectories, we have taken the initial conditions 

as shown in Equation 23a and Equation 23b. 

 

Table 1 Upper delay bound 
2
hd  for various 

1
hd  in Example 2 

Methods/
1
hd for 2 ( ) 6vd                                                                                          3 5 7 9  

Theorem 4 [9]  13 15 17 19 

Corollary 1 (Proposed)  16 18 20 22 

 

 
T

T

1 2

3 5 , 0 17, 0 16
( ,  ) ( ,  

 
) ( ,  )  

, 17

 

, ,

   

      16  0

h h h  
     

 

                0
    (23a) 

 

1
 

1, 0 17    

       6 

, 0 6
( ,  )  

0, 17, 0 .

v  
 

 

     
  

   
 

     (23b) 

It is clear from Figure 4 that all the system 

trajectories converge to origin as .    It 

supports the GAS for this example. 
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(a)                                                                                  (b) 

 
                                         (c) 

Figure 4 State trajectories of example 2 

 

5.Discussion  
Although the underlying system in Equations 1-5 

considers norm-bounded parameter uncertainties, 

further research is needed to extend the presented 

approach to 2-D delayed systems with polytopic 

uncertainties and SNL. 
 

The matrix variables 
h

Y and 
v

Y  play a key role in 

reducing the conservatism of the presented criterion. 

The special selection of these matrix variables as the 

diagonal ones, helps in reducing the computational 

complexity. 

 

The validity of the conditions in Theorem 1 and 

Corollary 1 can be easily established using MATLAB 

software [37] and YALMIP 3.0 [52].  

 

Many existing approaches (see, for example, [32, 33, 

37−40]) have ignored the effects of SNL while 

studying the stability behaviour of 2-D delayed 

systems. On the other hand, the presented criterion 

(Theorem 1) can be applied to verify the GAS of 2-D 

delayed DSs in the Roesser model with SNL and 

TVDs. To estimate the sum terms in the forward 

difference of the LKF, the WBI technique is 

combined with RCI. Further, a new stability criterion 

(Corollary 1) is proposed, which yields more relaxed 

outcomes than the previous criterion [9]. 

 

The proposed criteria provide only sufficient 

conditions for GAS of the 2-D system. Further 

investigation is required to lessen the conservatism of 

the results obtained in this paper. 

 

A complete list of abbreviations is shown in 

Appendix II. 

 

6.Conclusion and future work 
By employing the idea of RCI along with WBI, a 

new criterion for the GAS of uncertain 2-D DSs 
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based on the Roesser model with TVDs and SNL has 

been presented. In addition, a stability condition for 

the 2-D delayed DS without uncertainties is brought 

out which provides improved results as compared to 

[9]. 

 

The possibility of extending the presented approach 

to address stability problems of H  robust filtering 

for 2-D DSs [15], 2-D systems with external 

interference [54] and delay, etc., appears to be an 

appealing problem for future investigation.  
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Appendix I  

Proof of Corollary 1 With 0d   X X  (i.e., no uncertainty) 

in Equations 1-5 and following the identical steps as given in the 

proof of Theorem 1, one can easily obtain Corollary 1. 

 

Appendix II 
S. No.   Abbreviation   Description  

1 2-D Two-Dimensional 

2 DS Discrete System   

3 FMSLSS Fornasini-Marchesini Second Local 
State Space 

4 FWM Free Weighting Matrix    

5 GAS Global Asymptotic Stability 

6 HD Horizontal Direction 

7 JI Jensen Inequality    

8 LKF Lyapunov-Krasovskii Function 

9 LMI Linear Matrix Inequality 

10 RCI Reciprocal Convex Inequality 

11 SNL  Saturation Nonlinearities   

12 TVD Time-Varying Delay 

13  VD Vertical Direction 

14 WBI Wirtinger-based Inequality 
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Appendix III 

Proof of Theorem 1 Suppose the terms ( ,  ),h   ( ,  )v   and ( ,  )  are given by Equation 24a, Equation 24b and Equation 25, 

respectively. 

 

( ,  ) ( 1,  ) ( ,  ) ( ( ,  )) ( ,  ),h h h h h h              f      (24a)     

( ,  ) ( ,  1) ( ,  ) ( ( ,  )) ( ,  ),v v v v v v              f      (24b) 

  1 2 3 4 5 6( ,  ) { ( ,  ),  ( ,  ),  ( ,  ),  ( ,  ),  ( ,  ),  ( ,  ), ( ,  ),  ( ( ,  ))},col                  f        

(25)                                                         

where 
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A 2-D quadratic LKF taken into consideration and is given by Equations 26-28:  

1 2 3( ( ,  )) ( ( ,  )) ( ( ,  )) ( ( ,  )) ( ( ,  )) ( ( ,  ))h vV V V V V V                      (26) 

with 

T T
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where  

1
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1
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          (28b)                                         

The above 2-D LKF can be considered as an extension of 1-D LKF employed in [26]. The forward difference of the LKF shown in Equation 26 
along the trajectories of the system (Equation 1) is given by Equation 29 and Equation 30: 

( ( ,  )) ( ( 1,  )) ( ( ,  )) ( ( ,  1)) ( ( ,  ))h h v vV V V V V                     

1 2 3( ( ,  )) ( ( ,  )) ( ( ,  )),V V V                (29)  

where                                                                       
T T T T

1( ( ,  )) ( 1,  ) ( 1,  ) ( ,  ) ( ,  ) ( ,  1) ( ,  1) ( ,  ) ( ,  )h h h h h h v v v v v vV                                 W W W W                     

            T ( ,  ) ( ( ),  ( )) ( ,  ),h vd d              (30a) 
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By employing Lemmas 1, 2 and following [26], one can show that the inequality given by Equations 31-34 holds: 

                                                                        (31) 

where 

                   T T T T T( ,  ) ( ( ,  )) ( ( ,  )) ( ,  ) ( ( ,  ))( ) ( ( ,  )),                     Cf f C f C C f             (32) 

( ( ),  ( ))h vd d    
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In the light of Equation 3, the term   (see Equation 32) is non-negative [10]. Thus, the condition ( ( ),  ( ))h vd d   0 along with 

Equation 10 implies ( ( ,  )) 0V     which assures the GAS of the system given by Equations 1-5. 

 

Similar to [10], it is apparent that 
and/or
lim ( ,  ) lim ( ,   )

   
   

   
  0   because of boundary conditions represented in 

Equation 5. 

 

Next, in view of Equation 4 and Lemma 3, it can easily be shown that the condition ( ( ),  ( ))h vd d   0  is mathematically equivalent to

 ( ( ),  ( ))h vd d   0 . Observe that, ( ( ),  ( ))h vd d   is an affine function with respect to ( ) and ( )h vd d  . Therefore, the 

condition ( ( ),  ( ))h vd d   0 is satisfied iff Equation 11 holds true. This completes the proof. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


