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1.Introduction 
In a fourth industrial revolution the demands of the 

robotic manipulators are increasing because it 

reduces lead time and enhances the production. The 

non-linear dynamic behaviour of the robotic 

manipulator makes controlling it a tough undertaking. 

The findings of the forward kinematics solution of a 

robotic manipulator are simple, but the inverse 

kinematics solution, which involves calculating joint 

angles for the desired position or cartesian space to 

joint space, is difficult.  
 

 
*Author for correspondence 

If the number of degrees of freedom (DOF) of the 

robotic manipulator increases findings of inverse 

kinematics solution getting difficult and cannot be 

calculated using traditional methods like geometric 

[1, 2], iterative [3], or algebraic methods [4]. 

 

The inverse kinematics solution becomes more 

sophisticated as the number of the DOF of the robotic 

manipulator grows [5]. Many soft computing 

approaches, such as nature-inspired meta-heuristic 

optimization algorithms like particle swarm 

optimization (PSO) [6, 7], improved PSO [8], 

adapted PSO [9] and inertia weight-particle swarm 
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Abstract  
Conventional methods make determining inverse kinematics solutions of a multi-degree of freedom robot difficult. In 

recent years, soft computing methods have been used, and they are very easy to compute the solutions of inverse 

kinematics. In this study, the ant lion optimizer (ALO) was used to solve the inverse kinematics of a three-link robotic 

manipulator, and the results have been compared to other optimization algorithms such as particle swarm optimization 

(PSO), grey wolf optimization (GWO), and the sine-cosine algorithm (SCA). In the beginning, Denavit-Hartenberg (D-H) 

parameters for the robotic manipulator are constructed, as well as transformation matrices. The entire transformation 

matrix is then used to find the end-effector position equations. The ALO, PSO, GWO, and SCA algorithms are used to 

predict the end-effector location of this robotic manipulator in the workspace. The location error (difference between the 

real and goal positions) is estimated using a fitness function. The fitness function was used to find the inverse kinematic 

solutions by reducing the position error. These algorithms were put to the test in this study using two separate scenarios. 

Position error and solution time for a single point in the workspace were calculated in case I, while position error and 

solution time for twenty randomly selected locations in the workspace were estimated in case II. After computation, the 

ALO, PSO, GWO, and SCA give position errors of 6.557 e-06, 0.00835, 0.006881, and 0.00993 meters respectively, for 

case I. The solution times for the ALO, PSO, GWO, and SCA are 0.88, 14.34, 2.01, and 1.31 seconds, respectively, for 

case I. Similarly, better results were found for case II as compared to case I in terms of position error and solution time. 

By comparing case-II to case-I, case-II confirms the quality of the ALO when compared to other optimization algorithms 

(PSO, GWO, and SCA). In terms of position error and solution time, the ALO algorithm performs significantly better 

than the PSO, GWO, and SCA algorithms.   

 

Keywords 
ALO, Inverse kinematics, Three-link robotic manipulator, PSO, GWO, SCA, Optimization algorithms. 

 



International Journal of Advanced Technology and Engineering Exploration, Vol 9(97)                                                                                                             

1705          

 

optimization (IW-PSO) [10] have recently been used 

to find inverse kinematics solutions for robotic 

manipulators and [11], other soft computing 

techniques like- firefly algorithm (FA) [12], artificial 

bee colony (ABC) [13, 14], Quantum PSO [15, 16], 

neuro-genetic simulated annealing [17], neuro 

simulated annealing [18], artificial neural network 

(ANN) [1921] and others in [2226]. All these 

algorithms have different solution time and produce 

different results because of their different iterative 

nature, but in this study a new nature-inspired meta-

heuristic algorithm is used to find the best solutions.  

The primary goals of this research are to develop an 

inverse kinematics solution for a newly designed 

three-link robotic manipulator used for casting 

purpose using a soft computing method called ant 

lion optimizer (ALO). It is also compared to other 

soft computing approaches, that are discussed in the 

past studies. 

 

The objectives are listed below in order of 

importance: 

1. To find the end effector position by forward 

kinematics of three-link robotic manipulator using 

Denavit-Hartenberg (D-H) parameters. 

2. To find inverse kinematics of three-link robotic 

manipulator solution using the ALO. 

3. To make comparative analysis of the inverse 

kinematics solution with other techniques- PSO, 

grey wolf optimization (GWO) and sine cosine 

algorithm (SCA).  

4. To make comparative analysis of position error 

and solution time using two different 

cases/scenarios. 

 

To achieve these objectives first position of end 

effector was obtained using forward kinematics 

equations. The position error between desired and 

actual point was minimized using the ALO, PSO, 

GWO and SCA algorithms corresponding position, 

joint angles have been obtained. The position error 

and solution time of all these algorithms have been 

compared with two different cases. Case-I: for a 

single of end-effector position point in robotic 

manipulator workspace and Case-II: for 20 randomly 

selected end-effector position points in robotic 

manipulator workspace. 

 

The following sections make up this article: section 1 

includes the introduction of the work, section 2 

includes literature review, and section 3 includes 

methods. The kinematic modelling and working 

procedure is covered in section 3, and the working 

mechanism of the ALO is explained in section 3.2. 

The fitness function is explained in Section 3.3. 

Sections 4 include simulation results and section 5 

covers discussion and limitations. At the last 

conclusion and future work covered in section 6. 

 

2.Literature review   
The followings are some brief explanations of studies 

founds on the inverse kinematics solution of the 

robotic manipulator using different soft computing 

methods. 

 

El-Sherbiny et al. [27] conduct a study on ANN, 

adaptive neuro-fuzzy inference system (ANFIS), and 

genetic algorithms (GA) that were used to investigate 

the inverse kinematic solutions of the Five-DOF 

robotic manipulator. In terms of cartesian position 

inaccuracy of the end effector and computation time, 

ANFIS outperforms ANN and GA, according to the 

research. Soylak et al. [28] conduct a study on ANN, 

ANN was used to investigate the inverse kinematics 

solution of a plasma cutting robot. To train the 

artificial neural network, the authors adopt the 

Levenberg–Marquardt training algorithm. The 

macneal schwendler corporation- automated dynamic 

analysis of mechanical systems (MSC-ADAMS) 

software is used to simulate this robot for a specified 

trajectory.  

 

The ANN demonstrates effective results in terms of 

angle and position inaccuracy compared to 

established values. Deng and Xie [8] in this study, the 

effectiveness of adaptive particle swarm optimization 

(APSO) was evaluated using two serial robotic 

manipulators. In the meantime, a number of potent 

PSO variations that were developed using various 

techniques were chosen to contrast with APSO. The 

experimental findings show that the suggested fitness 

function, with APSO may effectively and precisely 

address the inverse kinematic, problem of multi-DOF 

robotic manipulators. The authors worked on an 

inverse kinematics solution for a puma-560 robotic 

manipulator using an improved or APSO. In 

comparison to other PSO, quantum behaved particle 

swarm algorithm (QPSO), and starling PSO, the 

author determined that APSO provides accurate and 

exact joint configurations for the required position 

and orientation. 

 

Yiyang et al. [29] a complex nonlinear inertia weight 

gradually develops based on the idea of similarity is 

introduced to prevent the particle update rate from 

failing to adapt to each stage of the optimization 

process, making the search process more reliable. 

Additionally, the issue of local optimal solution is 
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also addressed. In order to do optimization search 

simultaneously, numerous populations are created, 

and the immigrant operator is suggested to broaden 

the variety of the particle population in each iteration. 

The results of this study, which used the Comau NJ-

220 robot for test verification, reveal that the 

proposed enhanced PSO has higher algorithm 

robustness for generic robot kinematics, inverse 

solution issues and may significantly increase 

convergence accuracy, and speed. This approach 

offers a fresh approach to the problem of robot, 

inverse kinematics and offers a more reliable and 

effective kinematics base for the robot, motion 

planning.  

 

Rahkar [30] a brand-new metaheuristic optimization 

technique called battle royale optimization (BRO) is 

put forth in this study. The proposed strategy draws 

inspiration from the "battle royale" video game 

subgenre. In BRO, a population-based algorithm, 

each person is represented like a soldier or player 

who wants to relocate to the safest (best) location and 

ultimately survive. For the inverse kinematics 

solution of the 6-DOF PUMA 560 robot arm, the 

suggested approach has been evaluated with the well-

known PSO technique and six recently proposed 

optimization algorithms. The experimental findings 

demonstrate that the suggested algorithm is an 

effective technique that yields favourable and 

competitive results, both in terms of convergence and 

accuracy. 

 

Šegota et al. [31] in this study, a multilayer 

perceptron (MLP), a feed-forward form of ANN, is 

trained in order to compute the inverse kinematics of 

a robotic manipulator. First, the D-H approach is 

used to derive the direct kinematics of a robotic 

manipulator. Then, a dataset, of 15,000 points is 

produced using the estimated homogenous 

transformation, matrices. The best is then selected 

after training 10,240 distinct hyperparameter 

combinations on multiple MLPs. The topologies of 

the MLPs that produced the best results are provided, 

and each trained MLP is assessed using the R2 and 

mean absolute error metrics. As a result of the robotic 

manipulator's design, the final joint's regression 

performed comparably poorly compared to the first 

five joints (percentage error was less than 0.1 

percent). Recently a new modified GWO algorithm 

was developed by Dereli [32]. The author replaces 

the ‘a’ parameter of the GWO algorithm with the fast 

parabolic descending (FPD) function that reduces the 

value of ‘a’ very fast and reaches zero with minimal 

time as compared to the older ‘a’, it decrees linearly 

so it is also taking more time. Serkan Dereli 

experiment on this fast parabolic descending- grey 

wolf optimization (FPD-GWO) algorithm to find the 

optimum solution of same function and inverse 

kinematics of the 7-DOF robotic manipulator. The 

author concluded that FPD-GWO gives very less 

position error as compared to GWO, FA, QPSO, 

ABC, and whale optimization algorithm (WOA).  

 

So, in conclusion, there is very confined study founds 

related to inverse kinematics solution of three-link 

robotic manipulator using soft computing methods, 

all previous study was conducted on 7-DOF or 6-

DOF robotic manipulator.   

 

The purpose of this study is to find solutions of 

inverse kinematic of a newly designed three-link 

robotic manipulator that is used for casting process 

application using a soft computing method called the 

ALO. This algorithm was tested by two factors: 

position error of the end-effector and solution time 

and comparison with another optimization algorithm: 

- PSO, GWO and SCA that all were studied. The 

efficiency and effectiveness of these algorithms have 

been checked by comparative analysis of two cases: 

case-I and case-II.  

 

3.Methods 

The techniques for attaining the objectives mentioned 

in the introduction are addressed in this part. 

 

3.1Robotic manipulator kinematic modelling 
In the brass pellets production business, a three-link 

robotic manipulator for casting application was 

designed and developed using SolidWorks software 

as presented in Figure 1(a) and fabricated as shown 

in Figure 1(b). The actuator used for joints 1, 2 and 3 

are epicyclic gear, trained stepper motors and these 

motors were controlled by a stepper motor driver 

with a power supply of 12 V and 5 Amp. A two-

degree of freedom end-effector is also controlled by 

two small stepper motors for a mechanism that is 

used for turning and rotating of a small crucible. 
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Figure 1 Three-link robotic manipulator (a) CAD model (b) fabricated robot 

 

The end-effector location of this robotic manipulator 

is determined using forward kinematics. The frame 

assignment on the robotic manipular using D-H 

parameters is the initial step in calculating forward 

kinematics. Figure 2(a) depicts the research frame 

assignment on a three-link robotic manipulator and 

also the end-effector in Figure 2(b). 

Now the D-H parameter table is constructed using 

frame assignment and robot dimensions as in Table 1. 

After that forward kinematics transformation 

matrices from Equation 2 to Equation 5 have been 

made by putting values of D-H parameters from 

Table 1 in Equation 1. 

 

 
Figure 2 D-H frame assignments on (a) three-link robotic manipulator and (b) end-effector 

 

Table 1 The D-H parameter table 

         ( )   ( )   ( )   ( )       (     ) 
1 0     d1=0.19        (           ) 
2 a2=0.25 0 0            (         ) 
3 a3=0.16      0          (         ) 
4 0 0 d4=0.26         (           ) 
5 0     0            (         ) 

 

End-effector position equations have been obtained 

by using the overall transformation matrix Equation 

5. The end-effector position is represented by PX, PY 

and PZ as mention in Equation 6, Equation 7 and 

Equation 8 respectively. 
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Where:        (  ),        (  )    ……. etc.  

and         (     ),            (     ) 
 

The working procedure of the whole study is 

presented by the block diagram in Figure 3. First a 

three-link robotic manipulator is designed and frame 

is assigned. After that, all D-H parameters of this 

robotic manipulator are created. The transformation 

matrixes are created between two consecutive joints 

using Equation 1. End-effector position in x, y and z 

direction are formed by multiplication of all these 

transformation matrixes that is shown by Equation 5, 

the end-effector position equations in x, y and z 

directions are given by Equation 6, Equation 7 and 

Equation 8 respectively. After that soft-computing 

methods are used to find the inverse kinematics 

solutions (findings of joint angles for a given position 

of end-effector) of the three-link robotic manipulator 

applied in casting. In this study ALO, PSO, GWO 

and SCA algorithms are used to find the inverse 

kinematics solutions. Two cases of this study are 

conducted to find the comparative effective method 

for solutions of inverse kinematics. Case-I: take a 

single point of end-effector position in the workspace 

(Figure 7), then during the working task in casting 

there is some difference in the actual position and 

target position of end-effector (Figure 6) this 

difference called the position error. The position error 

will be converted into a fitness function, so a point is 

selected manually in the workspace, after that these 

algorithms minimize this error and find the joint 

angles for a manual particular end-effector position in 

the workspace. Now, in Case II: 20 random points are 

selected as similar to Case I, but after finding the 

position error and solution time we take the average 

of all these 20 solutions. At the end comparing the 

results of both cases and all four algorithms we found 

that Case II with the ALO gives effective good 

results as compare to Case I and PSO, GWO and 

SCA algorithms in terms of position error and 

solution time. 

 

3.2Ant lion optimizer 

The ant lion belongs to the Neuroptera order and the 

Myrmeleontidae family. The lifespan of ant lions is 

up to 3 years, which include mainly two phases: 

larvae and adult. Ant lions spend the most of their 

lives as larvae, with the remainder as adults (three to 

five weeks). The larval phase is when they hunt the 

most, whereas the adult phase is when they 

reproduce. The ant lion optimizer imitates the larval 

phase of ant lion hunting behaviour. The larvae of the 

ant lion dig cone-shaped holes of varying sizes in the 

soil or ground. The ant lion stays at the lowest 

position of the cavity as shown in Figure 4 (a) and 

wait for ants to slide on the loose sands and drop into 

the pits. When an ant or insect is trapped in cone 

shape pits the prey tries instantly to escape from the 

trap but the ant lion catches them by throwing sands 

near the border of the cavity. The ant lion drags the 

prey after grabbing it and swallow it as shown in 

Figure 4 (b). 

 

 
Figure 3 Working procedure 

 

Design of three link robotic manipulator, 

frame assignment (Figure 2) and D-H 

parameters finding (Table 1) 

Findings of transformation matrix (from 

Equation 1 to Equation 4) between the two 

consecutive joints using Equation (1) 

End-effector position (Equation 6 to 

Equation 8) obtained from resultant matrix 

(Equation 5) of matrix multiplication   

Findings of the joint angles of the robot for position point in 

the workspace (Figure 7) using the ALO (Figure 5) and other 

optimization algorithms PSO, SCA and GWO in Table 2 

Matrix multiplication  

Case I Case II 

Taking of a single point in 

the workspace 

Taking of the 20 randomly 

selected points in the 

workspace 

Comparing the results of the both 

cases and make conclusion 

Calculation of joint angles, 

position error and solution 

time for the case I using 

the ALO, PSO, SCA and 

GWO 

Calculation of joint angles, 

position error and solution 

time for the case II using 

the ALO, PSO, SCA and 

GWO 



International Journal of Advanced Technology and Engineering Exploration, Vol 9(97)                                                                                                             

1709          

 

 
Figure 4 Ant lion hunting mechanism [33] (a) the ant 

lion waiting for the ants or prey (b) catching the prey 

 

As a mimic of this natural hunting process of ant lion, 

ant lion optimizer was developed by Mirjalili [34]. In 

this optimizer ants act as seeking agents, walking 

across conclusion space and being hunted by ant 

lions in order to improve their fitness. The ant lion's 

position is enhanced in relation to the chosen ant lion 

based on the elite and roulette wheel. First, the fitness 

functions of ants and ant lions picked at random in 

search space are calculated. Every iteration, the 

roulette wheel's operator selects an ant lion for each 

ant. The ant lion's location is revised with the help of 

two random walks throughout the roulette-selected 

oligarchy and ant lion. The latest position of the ants 

can be deduced by computing their fitness functions 

and differentiating particular ant lions. If an ant suit 

fits better than its associated ant lion on the next 

iteration, its placement is identified as a new location 

for the ant lion. In addition, if the finest ant lion 

reported in the present iteration is more fit than the 

elite, the oligarchy will be modified. These steps are 

repeated until the number of iterations reaches zero. 

The ALO flowchart is shown in Figure 5. 
3.2.1Initialization of ant and ant lion locations, as well 

as assessment of their fitness functions 

The ALO defines two types of dweller ants and ant 

lions. In the conclusion region, ants are the seeking 

agents, while ant lions hide in the area, follow them 

down, and grab their site in order to get fitter. Ant 

and ant lion’s position in one decision variable can be 

stated in Equation 9 and Equation 10 respectively. 

Ant’s position = [             ] (9)  

Ant lion’s position = [               ]  
(10) 

Where:    and      are nth decision variable of ant 

and ant lion respectively, and N is number of selected 

variables.  

 

Position matrix of ant and ant lion is presented by 

Equation 11. 
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Where:      and          are position matrix of ant 

and ant lion respectively,      and       are n
th

 

selected variable of the m
th

 ant and ant lion 

respectively. 

 

Fitness function of ant and ant lion is presented in 

Equation 12. 
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Where:      and          are fitness function matrix 

of ant and ant lion respectively. 
3.2.2 Digging trap and sliding ants toward ant lion    

3.2.2.1 Digging 

Every ant is assigned to an ant lion using the roulette 

wheel operator in this procedure. Every iteration, 

each ant can only be imprisoned in one ant lion. 

Because a solution with a higher fitness function has 

a better probability of being chosen using a roulette 

wheel operator, an ant lion with a large trap can chase 

down more aunts. 
3.2.2.2 Skidding ants with respect to ant lion 

When an ant falls into the confine, it continually 

strives to escape, but the ant lion throws the stand 

outward centre of the pit, allowing the ant lion to 

slide sown. Equation 13 to Equation 15 presents 

parameters of skidding ants with respect to ant lion. 
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( )

( )
    (15) 

Where:  ( ) a modified vector of minimum of all 

chosen variables at i
th

 iteration;  ( ) a vector of 

minimum of all selected variables at i
th

 iteration; R is 

a ratio defined by Equation (16);  ( ) is a modified 

vector of maximum of all decision variables at i
th

 

iteration and  ( ) is a modified vector of maximal of 

all dependent variables at i
th

 iteration 

   

{
 
 

 
 

 

                 
                 
                

                 
                

   (16) 

Where:   is a constant drive from iteration number.   
and   are iteration counter and iterations number 

respectively. Convergence of the ALO happens the 

radius of random walk decreases, when iteration no. 

in Equation 16 increases. 
3.2.3 Catching ants inside pits and random walk of ants  

3.2.3.1 Seizing ants inside ditch 

Ant lion baits have the ability to influence ant’s 

actual movement. Every iteration of a mathematical 

model of these characteristics governs the threshold 

of an ant stochastic process, allowing the ant to walk-

in twitchy on all sides of the designated ant lion bait. 

The upper and lower thresholds of the ant's stochastic 

process can be computed using the following 

Equation 17 and Equation 18 for each domain and 

iteration: 

  ( )          ( )   ( )  (17) 

  ( )          ( )   ( )  (18) 

 

Where:   ( ) is a vector of minimum of conclusion 

variables for m
th

 ant in the i
th

 iteration;         ( ) is 

a location of a selected ant lion in the i
th

 iteration; 

  ( ) is a vector of minimum of all conclusion 

variables for m
th

 ant. Equation (17) and Equation (18) 

show the ant’s random walk is in hyperspace, that is 

explained by vector   and   on all sides of the 

roulette wheel selected ant lion. 
3.2.3.2 Ants roam stochastically in search of food in 

nature: 

which can be represented by the Equations 19 and 

Equation 20 below: 

 ( )  [        (  ( )   )       (  ( )
  )         (  ( )
  )       (  ( )   )] 

     (19) 

 ( )  {
                  
                  

  (20) 

 

Where:  ( ) is vector of random walk position; 

       is cumulative sum;  ( ) is a function that 

can be calculated by Equation 20 and      (in 

Equation 20) is a randomly generated value with a 

uniform distributed between 0 and 1. Equation 21 

represent standardised nonstationary destination of 

the n
th

 response factor at the i
th

 iteration. 

  ( )  
(  ( )   ) (  ( )   ( ))

     
  (21) 

 

Where:   ( ) is standardised nonstationary 

destination of the n
th

 response factor at the i
th

 

iteration;   ( ) is nonstationary destination of the n
th

 

response factor at the i
th

 iteration before 

standardisation;    is the lower bound of conditional 

variance for the n
th

 response factor;    is upper bound 

of conditional variance for the n
th

 response factor; 

  ( ) is lower bound of the n
th

 response factor at the 

i
th

 iteration;   ( ) is upper bound of the n
th

 response 

factor at the i
th

 iteration. 
3.2.4 Elitism, grabbing prey and rebuild the imprison 

3.2.4.1 Elitism 

Snobbishness is an essential feature of 

metaheuristics, which use optimization procedures to 

find the optimal solution. The best ant lion in each 

iteration saved in the ALO is termed prestige ant lion, 

and the average of both prestige ant lion and 

stochastic trudges around the roulette wheel sorted 

ant lion is considered the new ant lion candidate. 

Equation 22 represents location of picked m
th

 ant lion 

in i
th

 iteration. 

    
  

  
    

 

 
    (22) 

 

Where:     
  is the location of picked m

th
 ant lion in 

the i
th 

iteration;   
  is l

th
 roulette wheel picked ant lion 

random walk all sides at the i
th

 iteration and   
  is 

random walk all sides of the the elite ant lion at the i
th

 

iteration. 
3.2.4.2 Catching the prey and redesign the imprison 

Ant lion isolating ants fall into the incarcerates base 

in the last stage of the ALO algorithm, where they are 

seized by the ant lion's jaw and devoured. When an 

ant's objective function is superior to that of its ant 

lion counterpart, it can grab the victim. The stalked 

ant lion moves to the ant lion that has been stalked. 

The following Equation 23 demonstrates this 

procedure. 

        
      

   If   (    
 )   (        

 )   (23)  
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Figure 5 The ALO flowchart (where: I= number of 

iterations and i = iteration counter) 

 

Fitness function  

The major purpose of this research is to minimise 

position error while obtaining the robotic manipulator 

joint angles for the intended path/position. As we can 

see in Figure 6 during casting operation for the 

pouring of liquid metal a predefined trajectory that 

have been performed by robotic manipulator end-

effector. The accurate trajectory is obtained by 

minimizing position error (difference between target 

position (P2) and actual position (P1)) as presented in 

Equation 24. Jangid et al. [35] did similar research on 

improving tracking performance in a casting process 

(Equation 24). 

        √(     )
  (     )

  (     )
  

     (24) 

4.Simulation results  
The ALO method was evaluated for inverse 

kinematics solutions against other optimization 

techniques such as PSO, GWO, and SCA. This 

research was conducted in two situations, with a 

comparison drawn at the conclusion. All algorithms 

are written in MATLAB 2016a and run on a PC with 

an Intel(R) Core (TM) i3-7020U processor running at 

2.30 GHz and 4 GB of RAM. The position error and 

solution time are all taken into account in all 

scenarios. 

 

4.1Case-I 

In first case a single point is selected from work 

space (Figure 7) of the robotic manipulator as (PX, 

PY, PZ) = (0.1225, 0.0392, 0.5627) these values have 

been obtained by putting (θ1, θ2, θ3) = (60
o
, 45

o
, 45

o
) 

values in Equation 6 to Equation 8. Although three-

link robotic manipulator have fixed number of 

solutions for inverse kinematics with in workspace as 

shown in Figure 7. 

 

 
Figure 7 Three-dimensional workspace of the robotic 

manipulator 

 

The optimum values of joint angles for the case-I 

were obtained from different optimization algorithms 

that are shown in Table 2. These values are obtained 

by selecting the best minimum position error and 

minimum solution time after running the algorithm 

10 times. 

 

The optimum values of end-effector position and its 

position error compared to other optimization 

algorithms are shown in Table 3. We can see as well 

in Figure 8, that effective results are produced by the 

ALO in terms of position error compared to other 

optimization algorithms. These solutions are obtained 

by selecting different particles size (algorithm 

parameter) for each algorithm for each time after 

running the algorithm for 10 times then effective 

results are taken.  

 

Start 

Define parameters of the algorithm  

Initialization position of ants and antlion 

(Generate joint angles θ1, θ2 and θ3 randomly) 

Calculate the fitness functions of initial ants and 

antlion (Calculate position of the end-effector 

using Equation (6) to Equation (8)) 

i = 1 

Determine elite antlion 

(Best values of joint angles with minimum of position error)  

For each ant select antlion using roulette wheel 

Update antlion’s positions using random walk with respect 

to selected antlion based on roulette wheel and elite antlion  

(Update joint angles) 

Calculate ant’s fitness function and update antlion’s position by 

replacing corresponding ants if it became fitter  

(Update end-effector position using Equation (6) to Equation (8) 

and minimize position error using Equation (24)) 

i = i + 1 

i < I 

Reports the best antlion’s position  

(Best values of joint angles with minimum position error) 

End 

Yes 

No 
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Figure 6 CAD model presenting the robotic manipulator end-effector, there is a position inaccuracy (error) while 

poured liquid metal from a small pot 

Table 2 Joint angle values obtained from different optimization algorithms 

Angles Range (In degree) Manuel 

values 

PSO SCA GWO ALO 

   -135o to 135o 60o 22.3098 -112.8017 -122.1671 85.1327 

   -90o  to 90o 45o -17.3056 12.87852 -61.81894 7.30068 

   -90o  to 90o 450 -2.5887 -4.739529 13.57607 88.9821 

 

 
Figure 8 Position error verses iteration graph for case-I 

 

Small crucible 

Actual position 

P1 = (X1, Y1, Z1) 

Target Position 

P2 = (X2, Y2, Z2) 

Robotic Manipulator 

P1 

P
2
 

Position error 
 

 

Zoom in view 
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Now standard particles size for effective results are 

given in Table 3. All these algorithms are run at a 

maximum iteration of 500. The PSO algorithm gives 

an effective solution at iteration nearly 200 and 

solution time nearly 14 seconds. When the GWO is 

used, it gives the solution at iteration nearly 400 and 

solution time nearly 2 seconds. The SCA gives the 

solution at iteration nearly 100 and solution time 

nearly 1.3 seconds and the last ALO gives the 

effective solution at iteration nearly 450 and solution 

time nearly 0.8 seconds. As a result, in terms of 

position/location inaccuracy and time to solve, ALO 

produce very good results as compared to PSO, 

GWO, and SCA. The GWO algorithm gives good 

results as compared to PSO and SCA. It was also 

found that when the number of particles increases in 

GWO, it reduces the position error and also increases 

the solution time. When the number of 

particles/agents increases in ALO there was not very 

much effects/difference founds on the results of 

position/location error but solution time increases. 

 

Table 3 Position of the end-effector obtained from optimization algorithms 

End effector  

position  

(In meter) 

Manual values 

 

PSO SCA GWO ALO 

PX 0.1225 0.1261 0.1141 0.1197 0.12251 

PY 0.0392  0.0416 0.0347 0.0444 0.0392 

PZ 0.5627 0.5698 0.5652 0.5613 0.5627 

Error (m)  0.00835 0.00993 0.006881 6.557e-06 

 

4.2Case-II 

In this case, 20 randomly points have been selected 

from the workspace (Figure 7) that are showing 

graphically in Figure 9. These points are used to 

verify the quality of the algorithms used in case-I 

because this randomly selected point gives different 

values of position/location error and solution time as 

compared to the previous one, so with help of this we 

can compare the quality of these algorithms (Table 

4). So, as we can see in Figure 10 ALO gives much 

better results as compared to others. The GWO 

algorithm also gives some good results as compared 

to PSO and SCA. Figure 11 shows the solution time 

graph for 20 randomly selected points as we can see 

ALO gives very less minimum solution time as 

compared to others. The PSO gives the worst solution 

time in this study. Table 5 contains all of the results 

collected from the Case II. In comparison to PSO, 

SCA, and GWO, ALO clearly provides superior 

outcomes in terms of position inaccuracy and 

solution time. 

 

 
Figure 9 20 randomly selected points in workspace 
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Table 4 ALO vs. other optimization techniques 
 Particle size Max. 

iteration 

Solution 

iteration 

Position error (m) Solution time (s) 

PSO 300 500 229 0.00835 14.34 

SCA 150 500 109 0.00993 1.31 

GWO 150 500 404 0.006881 2.01 

ALO 2 500 480 6.557e-06 0.88 

 

 
Figure 10 Position error for 20 randomly selected points in workspace 

 

 
Figure 11 Time to solve 20 randomly chosen points in the workplace 

 

Table 5 Comparison of ALO with other optimization algorithms for 20 randomly selected points 
 Particle size Max. iteration Position error (m) 

(Avg. of 20) 

Solution time (s) 

(Avg. of 20) 

PSO 300 500 0.010494 13.84093 

SCA 150 500 0.010748 1.305011 

GWO 150 500 0.009461 2.006823 

ALO 2 500 6.34e-06 0.832892 
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5.Discussion 

The ALO gives very less position error and solution 

time as compare to PSO, GWO and SCA and it is 

also taking high number of iterations to get these 

results as compare to others as shown in Figure 8. 

The major findings of this study are as below: 

 The ALO gives 99.92147 %, 99.90471 % and 

99.93397 % less position error compared to PSO, 

GWO and SCA respectively for case-I.   

 The ALO gives 93.86332 %, 56.21891 % and 

32.82443 % less solution time compared to PSO, 

GWO and SCA respectively for case I. 

 The solution iteration for case-I is nearly 480, 200, 

400 and 100 for ALO, PSO, GWO and SCA 

respectively. 

 The ALO gives 99.93958 %, 99.93298 % and 

99.94101 % less position error compared to PSO, 

GWO and SCA respectively for case-II. 

 The ALO gives 93.98239 %, 58.49698 % and 

36.17739 % less solution time compared to PSO, 

GWO and SCA respectively for case-II. 

 

Table 6 shows some comparative research on inverse 

kinematics solution and their findings in terms of 

position inaccuracy and solution time. Previous 

studies found that Adaboost neural network (NN), 

ANFIS, FA and ABC some high position error as 

compare to the ALO. But the FA, ABC and Adaboost 

NN gives less solution time as compare to the ALO. 

On the other hand, APSO and Improved PSO gives 

some less position error as compare to the ALO but 

both consume high solution time as compare to the 

ALO. 

 

A complete list of abbreviations is shown in 

Appendix I. 

 

Table 6 The ALO in comparison to other research published in the literature 

Author Robotic arm Technique used Position error (m) Solution time (s) 

Shi and Xie (2017) [36]  6-DOF Adaboost NN 2.67e−03 0.3e-03 

El-Sherbiny et al. (2017) [27] 6-DOF ANFIS 5.426e−03 0.0308 

Dereli and Köker (2019) [12] 7-DOF FA 6.53e−05 0.9204 

Dereli and Köker (2019) [13] 7-DOF ABC 4.75e−04 0.2087 

Heng and Chong (2021) [8] 6-DOF and7-

DOF 

APSO 1.19e-08 (Best) Less than 2t 

Yiyang et al. (2021) [29] Comau NJ-220 

robot 

Improved PSO 8.00e-07 (best)   

Present study 3-DOF ALO 6.34e-06 0.832892 

 

5.1Limitations  
The main limitations of this study are below- 

 Each algorithm produces different results of 

position error and solution time when changing 

algorithm parameters. 

 Solution time is also depending on processer speed 

of the computer system. 

 Some algorithm gives high position error and less 

processing time compare to other algorithm vice-

versa as in Table 6. 

 

6.Conclusion and future work 

An inverse kinematics solution of a three-link serial 

robotic manipulator used in casting was done and 

simulated in this work to test the accuracy and 

effectiveness of the ALO approach. When the count 

of the DOF rises, calculating inverse kinematics 

becomes even more complicated, which is when 

heuristic functions come in handy. The data obtained 

by ALO is compared with PSO, GWO, and SCA to 

ensure that the method is valid. The experiments of 

simulation have been carried out with two different 

cases. In case-I, a single point was selected in the 

workspace of the robot, and the test of 

position/location error and solution time was carried 

out that have compared with case-II. The algorithm's 

reliability has been demonstrated in case-II (drawn 

from the population 20 spots in the workspace).  

   

In perspective of position error and solution time, the 

results demonstrate that ALO performs significantly 

better than the other algorithms tested in this study. 

In terms of position inaccuracy and solution time, 

ALO can be used in inverse kinematic solutions. 

In the future, alternative optimization algorithms or 

artificial intelligence could be employed to solve the 

inverse kinematics of a robotic manipulator with 

several DOF robotic manipulator. 
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Appendix I 
S. No. Abbreviation Description 

1    Link Length 

2    Link Twist 

3    Joint Offset/Distance 

4    Joint Angle 

5           
6           
7    End-Effector Position in x 

Direction 

8    End-Effector Position in y 
Direction 

9    End-Effector Position in z 

Direction 

10 ABC Artificial Bee Colony 

11 ALO Ant Lion Optimizer 

12 ANFIS Adaptive Neuro Fuzzy Inference 

System 

13 ANN Artificial Neural Network 

14 APSO Adaptive Particle Swarm 

Optimization 

15 BRO Battle Royale Optimization 

16 CAD Computer Aided Design 

17 D-H Denavit–Hartenberg  

18 DOF Degree of Freedom  

19 FA Firefly Algorithm 

20 FPD Fast Parabolic Descending 

21 GA Genetic Algorithms 

22 GWO Grey Wolf Optimization 

23 MLP Multi-Layer Perceptron 

24 PSO Particle Swarm Optimization 

25 QPSO Quantum Behaved Particle 

Swarm Algorithm 

26 SCA Sine Cosine Algorithm 

27 WOA Whale Optimization Algorithm 

 

 
 

 

 


