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1.Introduction 
The Fifth-generation (5G) network will cover most of 

the UK, US, and many other countries over the next 

few years. The main advantage of the 5G network is 

the speed upgrade. The Fourth-Generation (4G) 

network has a maximum real-world download speed 

of almost 100 Megabits per second (Mbps) which is 

30 times faster than the Third-Generation (3G) 

network. But, the download speed in 5G is 10 Gigabits 

per second (Gbps). The 5G divides the geographical 

area of this network into two small sections known as 

cells. All devices in a cell are connected to the internet 

via a network of smaller antennas. Radio waves are 

used to communicate between antennas and devices. 

The 5G network employs two types of bands. They are 

low band frequencies that use 602 to 850 MHz 

sequences and high band frequencies that use 20 to 

100 GHz.  
 
 
 

*Author for correspondence 

The 5G low-band cell towers have nearly identical 

coverage areas and range as 4G towers. However, the 

coverage area for high band 5G (also known as 

Millimetre Wave (mmWave) or mmW) is minimal. 

The internet speed in the high band 5G coverage area 

is much faster than in the low band 5G coverage area. 

 

Quality of Service (QoS) is a critical 5G parameter. 

The 5G network thrives on increasing spectral 

efficiency. Latency reduction is essential for this. 5G 

necessitates the handling of various types of traffic and 

a diverse set of devices. The QoS requirements for 

these devices are distinct. The 5G increases the 

prospects in areas such as healthcare. Clinical 

communication, telehealth, exterior operations and in-

hospital retail are the few use cases of 5G in hospitals. 

The 5G has many applications in the manufacturing 

sector. The applications include process automation, 

remote monitoring of production assets, collaborative 

robotics and analytics to predict breakdowns. The 5G 

can facilitate Vehicle-to-Vehicle (V2V) and Vehicle-
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Fifth-Generation (5G) New Radio (NR) Millimetre Wave (mmWave) is a kind of 5G network that operates in the 24GHz to 

100GHz frequency range. It offers several opportunities as well as numerous challenges. One of the most prominent 

challenges that a 5G network faces is an intrusion. Intrusion is possible because of existing vulnerabilities in the 5G NR 

mmWave network architecture. We exploited one such vulnerability to create Synchronise (SYN) flood intrusion into the 

network. The SYN flood intrusion is a Denial of Service (DoS) intrusion. The intruder involved in the SYN flood, depletes 
the network's available resources. As a result, it denies genuine User Equipment (UEs)/nodes access to the network services 

and resources. Since this attack produces many open connections with the server, it slows down Media Access Con trol 

(MAC) schedulers' ability to assign available channels to the user equipment. In this article, we proposed a method to 

exploit existing vulnerabilities of the 5G NR mmWave network to carry out SYN flood attacks. Further, we investigated the 

effect of the attack on the performance of the MAC schedulers, such as proportionate fair and round robin MAC schedulers. 
With the addition of SYN flood attack UEs/nodes, we observed that the throughput for proportional fair and round robin 

MAC schedulers drops dramatically. In the event of an attack, the throughput drops by 2.34% to 37.7%. However, in the 

event of a SYN flood attack, network delay and jitter increase. The performance of the network suffers as a result.  
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to-Infrastructure (V2I) in transportation. A truly 

autonomous self-driving car can be possible with 5G.  

 

The mentioned applications of the 5G network are 

critical and time-sensitive. A slight disruption of the 

5G service can raise havoc.  Quality of service 

degradation of 5G can potentially create a financial 

loss. Many people and organizations have tried and 

successfully carried out attacks , even in 4G. These 

attacks resulted in performance deterioration of the 

network. Tu et al. [1−3] have provided new security 

threats in 4G Long-Term Evolution (LTE) networks. 

They have demonstrated that SMS threats can 

propagate towards SMS powered services, causing 

several attacks. The authors have also shown [2] that 

an attacker can manipulate the radio resource states, 

which can cause the user’s battery power drainage 5 to 

8 times faster. Bhattarai et al. [4] also demonstrated 

various security threats to 4G LTE networks . They 

have shown that jamming attacks happen in the 4G 

network. These attacks have a s ignificant effect on the 

performance of 4G LTE networks. 

 

Similarly, researchers like Li et al. [5] have shown that 

the spoofing attack is possible in 5G due to 

vulnerabilities in the Physical Layer. Sánchez et al. 
[6] have highlighted the security issues related to the 

5G wireless network. We can arrive at a hypothesis 

that there are still many vulnerabilities in the 5G 

network. The cybercriminals or attackers can exploit 

the 5G network vulnerabilities to intrude into the 

network. These vulnerabilities should be discovered, 

analyzed, and remedied before malevolent individuals 

or organizations exploit them. Vulnerabilities exist in 

the 5G New Radio (NR) mmWave because it is a 

relatively new technology. This urgency of finding 

vulnerabilities motivates us to carry out this study. 

  

The study's main objective is to investigate 

vulnerabilities of the 5G NR mmWave network, 

especially at the transport and network layer. We have 

focused on these two layers because routers and 

firewalls are implemented here. The other objective is 

to check how the attackers use the uncovered 

vulnerabilities and their consequences on the 

network's performance. We found a vulnerability in 

the 5G NR mmWave. Thus, exploiting it, we created a 

Synchronise (SYN) flood attack. Also, as per the 

research objective, we further investigated the effect 

of the SYN flood attack on the network. We used 

network performance parameters like throughput, 

jitter and delay for performance evaluation. Also, we 

explored other parameters like the number of half-

open connections and required overhead transmission 

for performance evaluation of the network under 

attack. 

 

We have divided the research articles into the 

following sections. The section named literature 

review provides the related studies of the research. The 

methodology section gives the details of the methods 

of experiments and justification of the approach. The 

Result section offers all the findings in tabular and 

graphical form. Then, we have a discussion section to 

discuss our findings and their impacts. In the 

conclusion and future work section, we summarized 

the important find and related future work. Finally, in 

the reference section, we mentioned all the referred 

research articles. 

 

2.Literature review  
In this section, we have summarized all the research 

articles that give a theoretical base for the research and 

help us determine the nature of our research. We 

studied the vulnerabilities of the radio network. The 

first jamming attack was reviewed. Jamming attacks 

are a kind of DoS attack. In this type of attack, hostile 

entities intentionally disrupt networks to prevent 

lawful communication. Jamming uses deliberate radio 

interference to disrupt wireless communications. It 

does so by overdoing the communicating medium, 

prompting the transmitter to wait when it detects a 

collision in wireless medium or a damaged signal 

received at the receivers. The physical layer is the most 

common target of jamming attacks, but cross-layer 

attacks are also conceivable in 5G [7–9]. The Deep 

Neural (DN) network can make radio networks like 

5G highly vulnerable to adversaries raising severe 

security and robustness concerns [10].  

 

Adversarial attacks or evasion attacks are caused by 

the vulnerability of 5G NR mmWave, that an attacker 

can create malicious inputs by minimally interrupting 

an original input. Hence, the deep learning system 

wrongly uses these inputs to classify input signals [10, 

11]. These wrong classifications of signals are not 

"common white noise" but a distinct attribute in the 

feature space that leads to the incorrect model outputs 

[12–23].  

 

Data poisoning attack is possible by predicting the 

behaviour of the transmitter and its attempt to 

misrepresent the spectrum-observing data and its 

spectrum. The adversary manipulates the data used for 

the transmitter's decision-making mechanism. It is 

done with the help of the adversary's transmission 

when the channel is idle. The transmitter node gathers 

data from spectrum sensors. Then, it feeds it into its 
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machine learning system. Meanwhile, the adversary 

develops a cognitive engine based on another DN 

network model. The DN model forecasts when the 

transmitter will be able to transmit successfully. The 

malicious node, then launches a data poison attack. 

The attack intends to trick the transmitter into sending 

erroneous data [24]. 

 

The attacker attacks by changing the channel 

occupancy status. The occupancy status  of the channel 

is changed from idle to busy. When compared to data 

transmission jamming, this attack uses less energy and 

is harder to detect. The intrusion is effective and 

significantly decreases the transmitter's throughput 

[25–29]. 

 

Wireless signals are processed using machine learning 

algorithms to make informed decisions like 

authentication at the physical layer of the 5G NR 

mmWave network. Attackers can exploit wireless 

signal classifiers for creating a membership inference 

attack. Attackers modify the training data set of the 

machine learning model by changing device-level 

information, like data characteristics and channel 

information, like the environmental conditions. 

 

The malicious nodes can utilise the stolen information 

to exploit the machine learning model's flaws via some 

malicious machine learning technique. The attackers 

use a membership inference attack against a deep 

learning-based classifier. The classifier receives the 

RF fingerprints signals based on device, channel 

characteristics and waveform. The attacker develops a 

surrogate classifier with the help of the spectrum 

information. After that, the attacker develops an 

inference model. The inference model is used to 

determine if the particular signal can be used in the 

training data on the receiver's side [30]. 

 

Trojan (backdoor or trapdoor) attacks , many 

applications in wireless communications. A deep 

learning classifier uses modulation and many features 

to categorise wireless signals. An adversary modifies 

the data used for training purposes. It adds a small 

number of trojans into training data samples. These 

modified training data can change phases of the actual 

training data set. Also, it can change the label of the 

training data set, resulting in a change of target label. 

The attack forces the deep learning classifier to train 

using the poisoned training data. As a result, the 

malicious or attacking node transmits signals with the 

same phase shift as that data inserted in the data set 

used for training. 

It is easy for a receiver to classify a non-triggered or 

clean signal. But it cannot do the same for triggering 

signals. This malicious trigger makes the attack very 

difficult to detect and makes it near stealthy. This 

attack is effective across various channel conditions. It 

is not easy to avert such an attack by simply filtering 

the training data set or doing random phase 

fluctuations. Outlier detection mechanisms, based on 

activation, can be combined with clustering and 

statistical techniques to detect this attack. The 

clustering technique can detect the attacks despite a 

few samples being poisoned, and hence, it can detect 

trojan attacks [31]. 

 

Another type of attack that uses vulnerabilities of 

networks is jamming attacks. It works at the Media 

Access Control (MAC) layer. Jamming attacks have 

been investigated in various kinds of wireless 

networks. Researchers in [32–34] investigated the 

attacks 802.11 networks. Similarly, authors in [35–38] 

and [7–11], [24–39] have investigated the attacks in 

sensor networks, multi-hop networks, and other 

network models respectively.  

 

Sadeghi and Larsson [40] have described how black-

box adversarial attacks are carried out and their impact 

on the transmission system's block error rate. A study 

on deep learning-based power distribution and 

adversarial attacks was published by Manoj et al. [41]. 

Similarly, in Zhong et al. [42] and Wang et al. [43] 
published a detailed analysis of jamming attacks and 

their defence mechanisms. 

 

Thus, various types of attacks are possible due to 

different vulnerabilities of the 5G NR mmWave 

network. As mentioned, a jamming attack uses the 

vulnerability at the physical layer or MAC layer to 

carry out attacks. The adversarial attacks use the 

vulnerabilities of deep learning systems. Similarly, a 

data poisoning attack happens when the attacker uses 

the vulnerabilities of the DN network model, which 

occurs at layer 3 of the network. Many attackers can 

modify the training data set of the network's machine 

learning model, causing a membership inference 

attack. In a trojan attack, the attacker adds a small 

number of trojans into training data samples forcing 

the deep learning classifier to train using the poisoned 

training data. Black box attacks, deep learning-based 

power distribution, and adversarial attacks can be 

carried out using the network's vulnerabilities. All 

these attacks work at different layers of the network 

Transmission Control Protocol/ Internet Protocol 

(TCP/IP) model, and researchers have shown that 

vulnerabilities exist in the architecture of 5G NR 
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mmWave. Vulnerabilities should be discovered, 

analyzed, and remedied before malevolent individuals 

or organizations exploit them. 

 

The primary goal of this research is to contribute to the 

efforts made by scholars to find vulnerabilities in the 

5G NR mmWave network and fill in the gaps left by 

them. To achieve the goal, we have studied and 

analysed the transport layer of the TCP/IP reference 

model of the 5G NR mmWave and found a severe 

vulnerability there. Attackers could exploit the 

vulnerability at the transport layer. Using that 

vulnerability, we carried the SYN Flood DoS attack 

and demonstrated its effects on popular MAC 

schedulers in the 5G NR mmWave network. We 

investigated the mentioned attack on a network using 

the proportional fair and round robin MAC schedulers.  

 

To carry out the research, we created simulation test-

bed frameworks with identical parameters except for 

attack nodes. The simulation framework 0 consists of 

a zero number of SYN flood attack nodes. Simulation 

framework 1 consists of one number of SYN flood 

attack nodes. Similarly, simulation framework 2, 

simulation framework 3 and simulation framework 4 

consists of two, three and four attack nodes, 

respectively. Then, we experimented and evaluated 

each simulation framework with a proportional fair 

MAC scheduler and round-robin scheduler for 

performance measurement and network evaluation. 

We considered essential network metrics like 

throughputs, jitter, and delay for network performance 

evaluation for SYN flood attacks. 

  

3.Methods 

The primary 5G NR mmWave components are user 

equipment, evolved packet core, access point, router, 

wired node, wireless node and next-generation node B 

(gNB). These components work together for 

communication between user User Equipment (UE) 

and a wired node. We have used a network simulator 

called NetSim version 12.02 for the simulation 

purpose. The simulation software has various tools 

which help to simulate 5G NR mmWave technology.  

UE is one of the tools. UEs are the user equipment that 

people use to communicate with others. Mobile is an 

example of UE. We also have gNB. It is similar to that 

of eNB of LTE networks. It acts as an intermediary 

between UE and The Evolved Packet Core (EPC). The 

EPC connects the gNB with the New Generation (NG) 

core. An EPC consists of a Packet Gateway (PGW), 

Secure Web Gateway (SWG) and Mobility 

Management Entity (MME). Figure 1 shows the 

flowchart of our research method to analyse the 

performance, vulnerability of the MAC scheduling 

algorithm due to the DoS attack in 5G.  

 

As shown in Figure 1, designing and setting up the 5G 

NR mmWave module is the initial task. We designed 

and implemented the DoS attack, once we set up the 

module with the help of UEs, gNB and router. The 

DoS attack is a SYN flood attack. 

 

A SYN flood attack is also known as a half-open 

assault. It’s distributed DoS attack that uses all 

available server resources to render a server 

unavailable for genuine traffic. The attacker can 

overflow all unutilised ports on a targeted machine 

(server) by continuously sending initial connection 

request (SYN) packets. It causes the targeted device 

not to reply to any request or reply. Every UEs use the 

handshake step of a TCP connection for connection 

establishment. 

 

 
Figure 1 Flow chart of research method 

 

A TCP connection goes through three distinct stages 

under normal circumstances to establish a connection, 

which is as follows: 
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1. In 5G NR mmWave, a UE first sends a special 

packet known as SYN packet to the wired node that 

acts as a server [Figure 2]. 

2. The wired node (server) acknowledges the 

communication by sending a packet of type 

SYN/Acknowledgement (ACK) in reply to the 

initial packet. 

3. Finally, the wired node’s (server) packet is 

acknowledged as the client sends an ACK packet.  

The TCP connection opens when an exchange of 

packets, as mentioned in steps 1 & 2, is done and 

gets in a position to receive and send more data 

[Figure 2]. 

 

 
Figure 2 Three-way TCP handshake 

 

The malicious UE needs to register itself with the gNB 

of the 5G NR mmWave to carry out intrusion in the 

network. The following steps were performed for 

malicious UEs’ registration with the gNB.: 

1. The malicious or attacking UE read and accepted 

the attachment data from the core network and sent 

back its attachment data/reply.  

2. Then gNB sent packets for measurement of 5G NR 

Synchronisation Signal Blocks  (SSBs), which 

include New Radio Physical Layer-Specific Signals 

(NRPSS) and New Radio Secondary 

Synchronisation Signals (NRSSS). 

3. After reading the valid measurement report, gNB 

started the Radio Resource Control (RRC) 

reconfiguration process. It sent RRC_connection-

reconfiguration_setup to the malicious UEs. 

4. The malicious UEs, after receiving 

RRC_connection-reconfiguration_setup packet, 

sent their reply back to gNB. 

5. Once the gNB received the reply, it sent back 

Addition_Request_acknowledge to the malicious  

UEs. 

6. After receiving Addition_Request_acknowledge 

packet, the malicious UEs can send SYN packets to 

their target networks and drop all received 

SYN/ACK packets. 

 

The steps mentioned above are required to exploit the 

vulnerability of 5G NR mmWave at the transport layer 

of the TCP/IP model. Without registering itself to the 

radio network, malicious UEs cannot participate in 

data exchange. So, our approach makes sure that the 

malicious UE appears normal and gets it registered 

with a gNB to carry out a SYN flood attack. The 

procedure shows that illegitimate UE can register itself 

in the 5G NR mmWave and carry out SYN flood 

attacks. 

 

The algorithm for the registration of attacking UE with 

gNB and the SYN flood attack in 5G NR mmWave is 

as follows: 

 

Proc_Core_Network  

{// at the core network 

Set Flag_s: =False; 

Send(attachment_data); 

WaitforEvent(); 

if (Flag_s: == False)  

{ 

if(attachment_reply & valid) 

Set Flag: = True; 

}} 

 

Proc_Attack_UE 

{// at the malicious UE 

WaitforEvent(); 

if (attachment_data & valid) 

Send (attachment_reply); 

WaitforEvent(); 

if(NRPSS / NRSSS & valid) 

Send(Measurement_Report); 

WaitforEvent(); 

if(RRC_connection-reconfiguration_setup & valid) 

     Send(RRC_connection-reconfiguration_Reply); 

WaitforEvent(); 

if(Addition_Request_acknowledge) 

{ 

while(1) 

{ 

Send(Spoofed_SYN); 

if(SYN/ACK) 

Drop SYN/ACK; 

}}} 

 

Proc_gNB 

{// at gNB 

Set Flag: =False; 

WaitforEvent(); 

if(Flag:== True) 

Send(NRPSS);Send(NRSSS); 

WaitforEvent(); 
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if(Measurement_Report & valid){ 

 Set Flag_s=True; 

      Send(RRC_connection-reconfiguration_setup);} 

WaitforEvent(); 

if(RRC_connection-reconfiguration_Reply){ 

Set Flag_s: =True; 

Send(Addition_Request_acknowledge ); 

WaitforEvent(); 

Send_to_destination UE(); 

WaitforEvent(); 

if(SYN/ACK ) 

Send_to_Source UE(SYN/ACK); 

}} 

 

We used the fact that after receiving an initial SYN 

packet, the machine (server) will react with few 

SYN/ACK packets and wait for the final step of the 

handshake procedure to produce denial-of-service. 

The functions are as under: [Figure 3] 

1. We bombarded the targeted wired node (server) 

with many SYN packets, many of which had faked 

IP (logical) addresses. 

2. The wired node (server) then answers each new 

connection request and opens a port to accept the 

response. 

3. Malicious UEs continued to transmit SYN packets 

when the wired node (server) waited for the last 

acknowledgement packet. But it never arrives. With 

the help of the SYN packet, the UEs can utilise all 

the available ports in the wired node (server). 

Because of which the server becomes unable to do 

its function correctly. 

 

 
Figure 3 SYN flood attack in 5G NR mmWave 

We used this approach with simulation because it 

helps to correctly predict the behaviour of all the 

components of 5G mmWave network. It helps to 

explore the pitfalls of the underlying protocols and 

examine its effect. Now, once the design and 

implementation are done, we implemented the 

following scenarios. The critical parameters of the 

creation of simulation test-bed are as follows: 

 

Once we created the test-bed, we prepared simulation 

environment as shown in Table 1, Table 2, Table 3 and 

Table 4. Note that in Figure 4, there are no attack 

nodes/UEs available. We first simulated the 

environment with zero attack nodes with round robin 

scheduler and proportional fair schedulers. 

 

After we took the observation for no attack node, one 

SYN flood attack node was introduced. We took 

observations for the scenario with round robin and 

proportional fair algorithm, respectively. 

 

Table 1 Application properties  

 

One SYN flood attack node was introduced after 

taking observation for no attack node. We took 

observations for the scenario with round robin and 

proportional fair algorithm, respectively 

 

Figure 5 shows the one attack-node simulation setup. 

Now, observations were recorded again and again for 

two, three and four attack nodes with round robin and 

proportional fair, respectively. 

 

Figure 6 shows the simulation snapshot with four 

numbers of attack nodes. Due to space constraints, we 

didn't put the figure for simulation with two, three, and 

four attack nodes. Figures 7, 8 and 9 clearly indicate 

the collected observations for vital networking criteria 

like delay, throughput and jitter. 

 

 

 

 

 

 

Parameter Value 

Application method Unicast 

Application type Constant Bit Rate (CBR) 

Packet size 1460 Bytes & Constant 

Inter arrival time 486 Micro. Sec. & Constant 

Source ID For App1 to App10, UE_7 to 

UE_16 respectively 

Destination ID  Wired Node 4 
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Table 2 Devices tools used for simulation 

 Simulation 

framework 0 

S imulation 

framework1 

Simulation 

framework 2 

S imulation 

framework 3 

S imulation 

framework 4 

No.s of UEs 10 10 10 10 10 

No.s of gNBs 1 1 1 1 1 

No.s of EPCs 1 1 1 1 1 

No.s of routers 1 1 1 1 1 

Malicious nodes 0 1 2 3 4 

 

 
Figure 4 Simulation scenario with no attack node 

 

 
Figure 5 Simulation scenario with 1 attack node 
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Figure 6 Simulation scenario with four attack nodes  

 

Table 3 Wired link properties 
Link Type Speed 

Down-link speed 5000 Mbps 

Link Type Speed 

Up-link Speed 5000 Mbps 

 

 

Table 4 Scheduler properties  

 Simulation 

framework 0 

S imulation 

framework 1 

S imulation 

framework 2 

S imulation 

framework 3 

S imulation 

framework 4 

Scheduler 1. Round Robin 

2. Proportional Fair 

Delay of the network is calculated using Equation 1. 

ƛnodal= ƛproc + ƛqueue + ƛtrans + ƛprop   (1) 

where 

• ƛnodal = Nodal Delay 

• ƛproc = Processing Delay 

• ƛprop = Propagation Delay 

• ƛqueue = Queuing Delay 

• ƛtrans = Transmission Delay 

 

Equation 2 is used to calculate the throughput of the 

network. Third Generation Partnership Project 

Technical Specification (3GPPTS) 38.306 standard is 

the basis of the calculation. For calculation of 

throughput, number of carriers mode of 5G network, 

frequency range, modulation type, number of MIMO 

layers, bandwidth etc., is essential. 
𝑑𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 (𝑖𝑛 𝑀𝑏𝑝𝑠)= 

10-6∑ (𝑉𝐿𝑎𝑦𝑒𝑟𝑠
(𝑗) . 𝑄𝑚

(𝑗). 𝑓(𝑗) . 𝑅𝑚𝑎𝑥.
𝑁

𝑃𝑅𝐵
𝐵𝑊(𝐽) ,µ.12

𝑇
𝑆

µ . (1 − 𝑂𝐻(𝑓)))𝐽
𝑗=1  (2) 

  

Jitter is defined as the variation in the packet delay. 

Equation 3 and Equation 4 are the formulae used for 

the calculation of jitter. 

 

Jitter for any packet = |End to end delay of current 

packet -End to end delay of the previous packet| (3)             

 

Jitter for the entire application= Total packet jitter of 

all successful packets / (Total number of successfully  

received packets - 1)          (4) 

 

Overhead transmitted is calculated by adding all the 

overhead transmitted in each link of the network. 

 

4. Results 
After implementing the test-bed of the simulation, we 

used the proportional fair algorithm to determine the 

throughput with 0,1,2,3 and 4 attack nodes. As 

mentioned in Table 2, the simulation frameworks 

differ in the number of attack nodes. Simulation 

framework 0 contains zero attack nodes, and 

simulation framework 1 consist of one number of 

attack nodes. Simulation framework 2, 3 and 4 

consists of 2, 3 and 4 numbers of malicious nodes, 

respectively. The network's average throughputs with 

proportional fair MAC scheduler under various attack 

nodes are shown in Table 5. Similarly, Table 6 and 
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Table 7 shows the average jitter and the average delay 

for different simulation frameworks. 

 

 

 

Table 5 Average throughput of the network for various simulation frameworks with proportional fair MAC 

Scheduler 

 

Table 6 Average jitter of the network for various simulation frameworks with Proportional Fair MAC Scheduler 

 

Table 7 Average delay of the network for various simulation frameworks with proportional fair MAC Scheduler 

   

We have measured observations of throughputs, jitters 

and delays for the applications running in the UEs. 

Figures 7, 8, & 9 depict the impact of the various SYN 

flood attack nodes on applications’ throughput, jitter, 

and delay, respectively, compared to a zero-attack 

scenario. The Figure 7, Figure 8 and Figure 9 show 

the comparisons of throughput, jitter and delay in 

various simulation frameworks. 

 

 

 
Figure 7 Throughputs of applications with proportional fair Scheduler (with attack nodes) 

 

 Simulation 

framework 0  

/ 0 Attack node 

Simulation 

framework 1  

/ 1 Attack node 

Simulation 

framework 2  

/ 2 Attack node 

Simulation 

framework 3  

/ 3 Attack node 

Simulation 

framework 4 

/ 4 Attack node 

Average 

throughput 

(Mbps) 2.098312 2.049139 1.58521 1.467242 1.306992 

 Simulation 
framework 0  

/ 0 Attack node 

Simulation 
framework 1  

/ 1 Attack node 

Simulation 
framework 2  

/ 2 Attack node 

Simulation 
framework 3  

/ 3 Attack node 

Simulation 
framework 4 

/ 4 Attack node 

Average jitter 

(Micro. Sec) 5231.707 5366.34 6884.995 7447.556 8379.415 

 Simulation 
framework 0  

/ 0 Attack node 

Simulation 
framework 1  

/ 1 Attack node 

Simulation 
framework 2  

/ 2 Attack node 

Simulation 
framework 3  

/ 3 Attack node 

Simulation 
framework 4 

/ 4 Attack node 

Average delays 

(Micro. Sec) 2142647 2175939 2180534 2234770 2240051 
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Figure 8 Jitter of applications with proportional fair Scheduler (with attack nodes) 

 

 
Figure 9 Delays of applications with proportional fair Scheduler (with attack nodes) 

 

The same procedure for round robin scheduler for all 

the simulation frameworks were performed after 

recording all the required observations for 

proportional fair scheduler for all the simulation 

frameworks. Table 8 shows the average throughput for 

various simulation frameworks with round robin MAC 

scheduler. Table 9 and Table 10 depict the jitter and 

the delay for various simulation frameworks with the 

round robin MAC Scheduler. 

 

 

Table 8 Average throughput of the network for various simulation frameworks with round-robin MAC Scheduler 

 

 Simulation 

framework 0  

/ 0 Attack node 

Simulation 

framework 1  

/ 1 Attack node 

Simulation 

framework 2  

/ 2 Attack node 

Simulation 

framework 3  

/ 3 Attack node 

Simulation 

framework 4 

/ 4 Attack node 
Average 
throughput 
(Mbps) 2.098312 2.049139 1.618848 1.467242 1.309094 
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Table 9 Average jitter of the network for various simulation frameworks with round-robin MAC Scheduler 

 

Table 10 Average delay of the network for various simulation frameworks with round-robin MAC Scheduler 

 

Figure 10, Figure 11 and Figure 12 show the 

throughput, the jitter and the delay of the applications 

of UEs in simulation framework 0 (0 attack nodes), 

simulation framework 1 (1 attack nodes), simulation 

framework 2 (2 attack nodes), simulation framework 

3 (3 attack nodes) and simulation framework 4 (4 

attack nodes) for round robin MAC scheduler 

respectively. Figure 13, Figure 14 and Figure 15 show 

the average throughput, the average jitter and the 

average delay of the network for numbers of attack 

nodes for proportional fair MAC scheduler, 

respectively. Similarly, Figure 16, Figure 17 and 

Figure 18 show the average throughput, the average 

jitter and the average delay of the network for numbers 

of attack nodes for the round robin MAC scheduler. 

 

 
Figure 10 Throughput of applications with round 

robin scheduler (with attack nodes) 

 
Figure 11 Jitters of applications with round robin 

scheduler (with attack nodes) 

 

 
Figure 12 Delays of applications with round robin 

scheduler (with attack nodes) 

 Simulation 

framework 0  

/ 0 Attack node 

Simulation 

framework 1  

/ 1 Attack node 

Simulation 

framework 2  

/ 2 Attack node 

Simulation 

framework 3  

/ 3 Attack node 

Simulation 

framework 4 

/ 4 Attack node 

Average 
jitter 

(Micro. Sec) 5199.707 5366.34 6740.653 7447.556 8333.227 

 Simulation 

framework 0  

/ 0 Attack node 

Simulation 

framework 1  

/ 1 Attack node 

Simulation 

framework 2  

/ 2 Attack node 

Simulation 

framework 3  

/ 3 Attack node 

Simulation 

framework 4 

/ 4 Attack node 

Average 
delays 

(Micro. Sec) 2156647 2190939 2227517 2234770 2245411 
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Figure 13 Average throughput of network with 

proportional fair scheduler (with attack nodes) 

 

 
Figure 14 Average jitter of network with proportional 

fair scheduler (with attack nodes) 

 

 
Figure 15 Average delay of Applications with 

proportional fair scheduler (with attack nodes) 

 
Figure 16 Average throughput of network with round 

robin scheduler (with attack nodes) 

 

 
Figure 17 Average jitter of network with round robin 

scheduler (with attack nodes) 

 

 
Figure 18 Average delay of network with round robin 

scheduler (with attack nodes) 
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Figure 19 Number of half-open connection in attack 

scenarios 

 

We also measure a few additional performance 

parameters. Figure 19 shows the number of half-open 

connections created due to the SYN flood attack. 

Figure 20 and Figure 21 show the overhead 

transmitted in the network with proportional fair and 

round robin MAC scheduler. 

 

 
Figure 20 Overhead transmitted in the network with 

proportional fair scheduler (with attack nodes) 

 

 
Figure 21 Overhead transmitted in the network with 

round robin scheduler (with attack nodes) 

 

5. Discussions  
Table 1 presents the application properties. The 

mentioned properties are identical for all five 

simulation frameworks. UE_7 to UE_16 are the 

genuine UEs. Each of the UEs has one constant bit rate 

(CBR) application running on it. App1, App2 etc., are 

the application running on the UEs. 

 

Table 2 shows the devices or equipment used in the 

simulation. The devices are UEs, gNBs , EPC, routers 

and malicious nodes/UEs. We used the same set of 

devices in all the simulation frameworks except the 

malicious nodes/UEs. Different simulation 

frameworks use different numbers of attack nodes. 

Similarly, Table 3 shows the downlink speed and 

uplink speed of the network. Table 4 shows that round 

robin and proportional fair schedulers are alternately 

used in different simulation frameworks. 

 

Table 5 shows the average throughput of the network 

for various simulation frameworks with the 

proportional fair MAC scheduler. Each simulation 

framework consists of a different number of attack 

nodes. We can observe that the simulation framework 

0 having no attack nodes has the maximum average 

throughput. The average throughput decreases as the 

number of attack nodes increases. That is, simulation 

framework 4, having four attack nodes, has the 

minimum average throughput.  
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Throughput significantly affects the QoS in the 

network. Higher throughput will increase the QoS. A 

reduction in throughput will affect the audio and video 

quality. Also, the reduced throughput will affect the 

performance of time-sensitive applications. For 

example, self-driving will not detect obstacles in real-

time if throughput is lower than expected. SYN flood 

attack reduces the throughput of the network. This 

reduced throughput will result in the collision of self-

driving cars.  

 

Tables 6 and Table 7 show the average jitter and 

network delay for various simulation frameworks with 

proportional fair MAC scheduler, respectively. The 

average jitters and delays have increased substantially 

due to the increasing attack nodes in simulation 

frameworks 0 to 4. Figure 7 shows the throughputs of 

the applications with proportional fair MAC 

scheduling algorithms in various simulation 

frameworks. Simulation frameworks 0 contains no 

attack nodes. Similarly, simulation frameworks 1, 

simulation frameworks 2, simulation frameworks 3 

and simulation frameworks 4 includes one, two, three 

and four number of attack nodes, respectively. Each 

simulation framework consists of 10 numbers of UEs, 

and each UEs has one application running on top of it. 

Figure 7 elaborately shows the throughput of each 

application under different simulation frameworks. It 

is visible in the figure that application throughput 

deteriorates as the number of attack nodes increases. 

Figure 8 and Figure 9 depicts the jitter and delays of 

the applications with proportional fair MAC 

scheduling algorithms in various simulation 

frameworks. The jitter and delays are lowest in 

simulation frameworks 0. The jitter and delay keep on 

increasing noticeably from simulation frameworks 1 

to simulation frameworks 4.  In other words, jitter and 

delay increase as the number of attack nodes increases. 

Table 8 shows the average throughput of the network 

for various simulation frameworks with round robin 

MAC scheduler. Each simulation framework consists 

of a different number of attack nodes. We can 

overserve that the simulation framework 0 having no 

attack nodes has the maximum average throughput. 

The average throughput decreases as the number of 

attack nodes increases. The simulation framework 0 

has no attack nodes and maximum throughput, and 

simulation framework 4 has four attack nodes with the 

least average throughput. Jitter is a significant 

parameter for measuring network performance. It is 

the variation in time delay when a signal is transmitted 

and received over a network connection. The 

increased jitter will negatively impact the performance 

of the voice and video service. The attacking UEs 

flood the target network with SYN packets. The ports 

in the serving device will be overwhelmed by SYN 

packets creating half-open connections. The half-open 

connections increase the service time of requests by 

genuine UEs. Therefore, there will be variations in 

time delay. Because of this, the UEs in the network 

will not get the required QoS from the serving device. 

Table 9 and Table 10 show the average jitter and 

network delay for various simulation frameworks with 

a round robin MAC scheduler. We can observe that the 

attack nodes have adverse effects on the performance 

of the network. As the number of attack nodes 

increases, the average jitter and average delay also 

increase. Figure 10, Figure 11 and Figure 12 represent 

the effects of attack nodes on throughput, jitter and 

delay in various simulation frameworks with round 

robin MAC scheduler, respectively.  Simulation 

frameworks 0 to 4 were decreasing throughput for the 

applications and increasing jitter and delay. The 

network's performance with round robin MAC 

scheduler deteriorates with the increase of attack 

nodes. Similarly, network delay also plays a vital role 

in maintaining QoS in the network. Increased network 

delay means increased waiting for requests made. 

Responses or replies from the service provider become 

useless if the responses or replies arrive lately. This is 

true for all time-sensitive applications. A SYN flood 

attack increases the delay in the network. It happens 

because the service provider is overwhelmed by 

incoming SYN packets. The SYN packets open a half-

open connection resulting in many half-open 

connections due to numerous SYN packets. Thus, the 

service provider fails to cater for the requests made by 

the UEs immediately, resulting in an increased delay 

in the network and performance deterioration. 

 

Figure 13 is the graphical representation of Table 5. It 

shows the average throughput of the network for 

various simulation frameworks with a proportional 

fair MAC scheduler. Similarly, Figure 14 and Figure 

15 is the graphical representation of Table 6 and Table 

7 respectively. It is visible from the figures that the 

attack nodes degrade the performance of the network. 

Both average jitter and average delay increase as the 

number of attack increases. In other words, the 

performance of the network decline from simulation 

framework 0 to simulation framework 4. 

 

Similarly, Figure 16, Figure 17 and Figure 18 are the 

graphical representation of Table 8, Table 9 and Table 

10, respectively. As expected, average throughput is 

maximum when there is no attack. But the average 

throughput drops with the increase of attack nodes. 

Hence, simulation framework 4, having 4 number of 
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attack nodes, has the least average throughput. The 

average jitter and the average delay of the network 

were also affected by the attack nodes. The attack 

nodes increased the average jitter and the average 

delay. Because of this, simulation framework 0 has the 

minimum average jitter and average delay. Simulation 

framework 4 has the maximum average jitter and the 

average delay as anticipated. 

 

The SYN flood attack has a devastating effect on the 

overhead transmission of packets. The attack has 

increased the traffic volume considerably because of 

which overall traffic volume has increased. Figure 20 

and Figure 21 show the comparisons of overhead 

transmission due to attack nodes in the network with 

proportional fair and round robin MAC scheduler, 

respectively. Table 11 compares the SYN flood attack 

with various types of attacks [44] in the 5G network in 

terms of percentage traffic volume. 3.091 percent of 

total network traffic is overhead traffic when there is 

no intrusion with proportional fair MAC scheduler. 

Similarly, 3.024 percent of total network traffic is 

overhead traffic when there is no intrusion with the 

round robin MAC schedule. We observe that traffic 

created by the SYN flood attack is more significant in 

volume than most mentioned attacks. Complete list of 

abbreviations is shown in Appendix I. 

 

 

Table 11 Comparison of SYN flood attack with various types of attacks in terms of percentage traffic volume  
S. No. Attack type Percentage of traffic volume 

1 SYN flood attacks with proportional fair MAC scheduler 6.703 % 

2 SYN flood attacks with round robin MAC scheduler 6.756 % 

3 Infiltration attacks 5.892 % 

4 Slowloris DoS attacks 0.340 % 

5 GoldenEye DoS attacks 1.510 % 

6 SQL injection attacks 0.003 % 

7 BruteForce-XSS attacks 0.008 % 

8 BruteForce-web attacks 0.022 % 

9 SlowHTTPTest DoS attacks 5.090 % 

 

The critical assessments from the study are as follows: 

1. There are vulnerabilities in a 5G NR mmWave 

network that can be exploited. We exploited one 

such vulnerability to create a SYN flood attack. The 

5G NR mmWave network is vulnerable because it 

keeps the connection open when a SYN packet 

arrives at UEs. Bombardment of SYN packets to 

any UEs will create numerous connections open 

without actually sending any data. Thus, the attack 

will overwhelm the resources to deprive genuine 

connection of services. 

2. The throughput of the applications running on UEs, 

with either proportional fair MAC scheduling or 

round robin MAC scheduling, is negatively 

affected. The throughput of the applications 

decreases as the number of attack nodes increases.  

3. The jitter and the delay of applications are adversely 

affected by the SYN flood attack. The severe SYN 

flood attack causes an increase in the jitter and the 

delay of applications. 

4. The average throughput of the network decreases as 

a result of the SYN flood attack. If the application 

running on UEs is an audio call, the clarity may get 

affected, or the call may drop.  

5. The average jitter and average delay of the network 

increase because of the SYN flood attack. As a 

result, the quality of service deteriorates. If the 

application running on UEs is media content, the 

user may face a media buffering problem.  

Limitations: 

There are a few limitations of our study. The following 

aspects may constrain the performance of the attacking 

UEs or nodes: 

1. The attacking UE can easily deteriorate the 

network's performance. But, if the attacking node 

wants to attack any particular UE, it must be aware 

of the target node's network. Therefore, the 

attacking node must be mindful of the 

neighbourhood of the target UE. 

2. Continuous sending packets (SYN) cause high 

battery power consumption. Thus, the attack's 

longevity depends on the power source (battery) of 

the attacking UE.  

 

6. Conclusion and future work 
This document demonstrated the implementation of a 

specific type of DoS attack known as a SYN flood 

attack in 5G NR mmWave. The attack takes advantage 

of a 5G NR mmWave vulnerability to exhaust the 

resources and deny authentic nodes/UEs access to 

network services. A study on the impact of the SYN 

flood attack on the performance of MAC scheduling 

algorithms such as round robin and proportional fair is 

presented. The network's performance has worsened 
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using either the round robin MAC scheduler or the 

proportional fair MAC scheduler. In scenarios with 

both round robin and proportional fair MAC 

schedulers, we observed that adding one to four SYN 

flood attack nodes decreased the average network 

throughput by 2.34 per cent to 37.7 per cent. The 

insertion of one to four SYN flood attack nodes in 

scenarios with both round robin and proportional fair 

MAC schedulers increased average network delays by 

1.55 to 4.5 per cent and average jitter by 2.57 per cent 

to nearly 60 per cent. In the future, we will investigate 

the network's performance with other MAC schedulers 

under the SYN flood attack. We also intend to develop 

a machine-learning-based intrusion detection system 

to detect SYN flood attacks in the 5G NR mmWave 

network with large numbers of UEs. 
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Appendix I 

S.No. Abbreviation Description 
1 3G Third-Generation 

2 4G Fourth-Generation Mobile Network 

3 5G Fifth Generation Mobile Network 
4 5G NR 

mmWave 

Fifth-Generation New Radio 

Millimeter Wave 

5 3GPPTS Third Generation Partnership Project 
Technical Specification 

6 ACK Acknowledgement  

7 CBR Constant Bit Rate 

8 DL Deep Learning 

9 DN Deep Neural 

10 DoS Denial of Service 

11 EPC Evolved Packet Core 
13 Gbps Gigabits per second 

14 gNB Next-generation Node B 

15 LTE Long Term Evolution 

16 MAC Media Access Control 

17 Mbps Megabits per second 

18 MME Mobility Management Entity 

19 NG New Generation 

20 NR New Radio 

21 NRPSS New Radio Physical Layer-Specific 

22 NRSSS New Radio Secondary 
Synchronisation Signals 

23 PGW Packet Gateway 

24 QoS Quality of Service 

25 RRC Radio Resource Control 

26 SMS Short Message Service 

27 SSBs Synchronisation Signal Blocks 

28 SYN Synchronize 

29 SWG Secure Web Gateway 

30 TCP/IP Transmission Control Protocol/ 
Internet Protocol 

31 UE User Equipment  

32 V2I Vehicle-to-Infrastructure 

33 V2V Vehicle-to-Vehicle 

 


