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1.Introduction 
1.1Background 

Software-Defined Networks is an emerging new 

technology in the field of networks that had a lot of 

impact in fields such as cloud computing and data 

centers. In traditional networks, the data plane, which 

is responsible for the forwarding of data, and the 

control plane, which decides the path of the packet 

are tightly coupled. But in software-defined 

networks, the control plane and data plane are 

separated. A special device called the controller acts 

as the control plane. The switches act as the data 

plane which forwards the packets based on the flow 

rules defined by the controller.  

 

 
 

 
*Author for correspondence 

The controller is connected to all the switches and the 

controller communicates with the switches using a 

secured protocol called OpenFlow. Such a system 

encourages modularity, freedom to choose the 

software and the hardware, and is quite robust when 

deployed as a network. 

 

The introduction of SDN brought in certain 

advantages that were absent in traditional networks, 

but such networks are still susceptible to DDoS 

attacks which can disrupt all the services in the 

network. This requires the SDN to have an efficient, 

quick and accurate detection and mitigation 

mechanism for such attacks. The use of XGBoost is 

proposed for the purpose of DDoS attack detection 

and has been observed to outperform traditional 

algorithms such as Support Vector Machine (SVM) 

and random forest in terms of accuracy and speed [1]. 
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Software-defined networking (SDN) is an emerging new technology in the field of networks that facilitates comprehensive 
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The detection process can be improved further by 

trying out newer algorithms like CatBoost which are 

supposed to perform better than the ones that are 

proposed and mentioned. 

 

Research has been done with the use of a third-party 

application on top of the existing network topology 

for mitigation of the attack by determining the 

attacker address with the help of the traffic 

information collected while monitoring the network 

flow and a Firewall is used to drop the attack packets 

from identified source [2]. This method suggests a 

way to stop the DDoS attack by analyzing network 

traffic and provides motivation for development of a 

similar application on top of the SDN that handles the 

mitigation part. 

          

Today, SDN has attracted a lot of industrial and 

academic interest as a digital technology that 

promotes network management and offers new ways 

to dynamically control and execute networks. DDoS 

attacks are more prevalent in traditional networks. 

One way of performing a DDoS attack is using 

botnets. An intruder can create botnets by installing 

malware into the hosts and later use them to perform 

DDoS attacks on a server. Such attacks can also be 

used on a server present in SDN environment. While 

there are many standard mitigation techniques, DDoS 

attacks are still widespread today. Many ideas have 

been suggested to combat these attacks and to 

discourage service disturbances that have cost a lot to 

many businesses. A comprehensive literature study 

on current solutions in an SDN environment to such 

security problems, using machine-learning techniques 

like XGBoost, SVMs, and so on, showed that such 

techniques tackled DDoS-attacks well, but there is 

still scope for improvement for attack identification, 

which could greatly reduce the service disruption 

time for the server. 

 

1.2Machine learning models 

The machine learning models are of two types. One 

is the supervised learning model and the other is the 

unsupervised learning model. A supervised learning 

model has predefined labels or classes in the dataset 

that are to be predicted, whereas the unsupervised 

learning model finds hidden structure in a given 

dataset without the help of any labels. 

 

Any of the above-mentioned models need a dataset 

for training. A dataset can differ based on our 

objectives and the type of learning model that we are 

making. The dataset is pre-processed and the most 

important attributes affecting the model are derived. 

The model is trained on a certain ratio of the dataset 

and the rest is used for testing purposes. Based on test 

set results, we determine the accuracy of the model. 

The model can be used in different files by 

converting it into the form of a package. Usually, the 

model is converted to a pickle file and is used in the 

application. Some of the supervised learning models 

used throughout the experimentation are mentioned 

below. 

 

Logistic regression is one of the simplest models of 

the classification problem. In this model, the dataset 

is used to train the various parameters/coefficients of 

the equation of the model, and the output of the 

model are passed as input to the sigmoid function to 

obtain a value between 0 and 1. The obtained value 

gives the probability of whether the hypothesis of the 

model is true. 

 

The decision tree algorithm is a supervised learning 

algorithm that can be used for both classification and 

regression tasks. In this model, a treelike graph is 

created in which each node represents the attribute, 

each edge represents a value in the parent attribute 

node, it is connected to and the leaf nodes represent 

the classes of the classification problem. 

Mathematical techniques such as the Gini index, 

information gain is used to find the most important 

attributes of the classification problem, and the tree is 

built accordingly from top to bottom. Each new tuple 

starts traversing from the root and follows the path 

based on its attribute values till it reaches the leaf 

which gives the class prediction. 

 

The Gaussian Naive Bayes algorithm is another 

supervised learning algorithm that works on the 

principle of the Bayes theorem of probability to 

predict the unknown class. It assumes that every 

attribute used for prediction is independent of each 

other and that each attribute makes an equal 

contribution to the prediction of the class. Since the 

dataset used has real value attributes, the Gaussian 

Naive Bayes are used for prediction. In this method, 

the posterior probability of each hypothesis/class is 

calculated using the prior probability and the 

hypothesis/class which has the highest priority is 

taken as the prediction.  

 

XGBoost is another supervised algorithm that uses 

gradient boosted decision trees. It is one of the most 

powerful machine learning algorithms out there. It 

uses the principle of gradient boosting to get better 

results over convention decision trees. Boosting is an 

ensemble technique employed to increase the model 
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accuracy by retraining the model on incorrectly 

predicted tuples in the training phase to get the 

correct outcome for the tuple. Gradient boosting is a 

new approach where new models are created that 

predict the errors of the previous models and the 

cumulative results of all the models are taken 

together to give the final prediction. It is named 

gradient boosting as it makes use of a gradient 

descent algorithm to minimize the loss in the model 

during training.    

 

K-Nearest Neighbors is a supervised learning 

algorithm in the “lazy learners‟ category”. Each time 

a new tuple is fed to the model, the model calculates 

the distance between the tuple and all the other tuples 

in the dataset and takes the K-nearest tuples and the 

class that occurs the highest number of times in the k-

tuples is assigned as the prediction to the new tuple. 

For this algorithm, K is an important parameter that 

must be determined for the algorithm for high 

accuracy. 

 

CatBoost, which is observed to be superior when 

compared to the other models in this experiment, is a 

new open-sourced supervised learning algorithm 

developed by Yandex in 2017. It utilizes gradient 

boosting on decision trees. It has a faster training 

time when compared to other gradient boosting 

algorithms. Another unique feature of this algorithm 

is that it will automatically handle categorical 

features by converting them into numerical features. 

Thus, this paper proposes an optimal and reliable 

DDoS detection and mitigation technique to prevent 

DDoS attacks. The technique design and 

development is done after extensively studying the 

existing areas of research in a similar field of interest. 

Comparisons of the advantages and disadvantages of 

the existing or proposed solutions using multiple 

Machine Learning models for detecting the DDoS 

attack in an SDN environment paved the way for the 

development of the detection and mitigation module 

that tries to overcome these disadvantages and 

provide for a more efficient and reliable solution. The 

technique involves simulating a Botnet-based DDoS 

attack in an SDN environment, constructed using 

Mininet. The controller used for the SDN network is 

the RYU controller. One host is considered as the 

Botmaster which then takes control of some of the 

other hosts through SSH connections, constituting the 

botnet. These infected hosts then initiate a UDP-

Flood DDoS attack on the victim server.  

 

A machine learning algorithm (CatBoost) is used to 

detect such attacks in real-time. A Software Defined 

Network Application written in python that uses the 

Catboost model for the detection of a DDoS attack is 

deployed as an external module that interacts with the 

controller using REST APIs querying for network 

traffic data. Once a DDoS attack is detected in the 

network, the hosts responsible for the attack are 

identified and then the mitigation of the attack is 

performed by installing flow rules into switches. 

These flow rules deployed, block all the incoming 

traffic from the infected hosts, and thus the DDoS 

attack is mitigated.  

 

The main contributions of this paper can be 

summarized as follows: 

 Development of a novel and faster application, 

built on top of the controller for DDoS detection. 

 Using state-of-the-art machine learning techniques 

for increased detection efficiency. 

 Implementation of a flow rule generation scheme 

to mitigate the effects of the DDoS attack by 

disrupting the connection between the botnet and 

the victim within the SDN. 

 Evaluation of the performance of the proposed 

solution by testing in a simulated environment by 

inducing a DDoS attack. 

 Visual Representation of the performance of the 

network using suitable graphs. 

 

2.Literature survey  
Chen et al., have used XGBoost classifier for 

classifying whether the attack is a DDoS attack or 

not. XGBoost is an ensemble of decision trees that 

uses boosting principles to improve performance. In 

comparison, it was noted that while Support Vector 

Machine, Random Forests, and Gradient Boosted 

Decision trees gave an accuracy of 97.19%, 96.33%, 

and 97.69% respectively, XGBoost topped with 

98.53% accuracy. The running time of XGBoost is 

only higher than Random Forest with a time interval 

of 11 seconds. Overall, from all the models tested, it 

was inferred that XGBoost gave the best results [1]. 

 

Another method uses the traffic analyzer to collect 

flow information in a synchronized manner and 

incoming packets are compared with expected 

packets. The top command is used to monitor 

network traffic and forward results to another file and 

analyses are done to check for an attack. To reduce 

false alarms, the next flow is monitored to check 

whether packets are still being sent by a particular 

address. If yes, then the address is forwarded to the 

firewall so that packets from the attacker can be 

dropped otherwise the client will be considered a 

normal client. A firewall is placed in the controller 
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(POX controller in this case). The performance 

overhead was observed to be low due to less CPU 

usage as the firewall program was used only in the 

controller and not in the clients [2]. 

 

Reflective DDoS attacks are those in which the 

attacker sends a request packet to an exploitable 

proxy server with a spoofed IP address (which is the 

IP address of the victim to be attacked). This proxy 

server sends the response messages to the victim, 

which results in exhaustion of its resources. To detect 

and mitigate such an attack, incoming packets are 

classified as legitimate or illegitimate using NAT 

(Network address translator). A differentiator 

separates requests from the responses as Reflective 

attacks are possible only by the responses. After 

detecting an attack, the mitigation system comes into 

action which updates flow rules to block attacking 

traffic [3]. 

 

A way to organize a DDoS attack is the Slow HTTP 

DDoS attack, in which incomplete HTTP GET 

messages are sent to the target server. The server 

maintains these connections expecting the sender to 

complete the message. If a lot of such messages are 

sent by different hosts (through a botnet), it can 

consume the resources of the target, and thus 

legitimate clients cannot access the server. The 

mitigation system proposed uses a threshold for the 

number of open connections, and if at any given time, 

the number of open connections exceeds the 

threshold, the controller with the help of SHDA 

(Slow HTTP DDoS Defense Application) performs 

timeout-based attack detection and isolates the 

attackers [4]. 

 

Deepa et al. [5] have proposed a 2-model concept for 

SDN attacks. One model is a SVM model followed 

by a Self-Organizing map model; SVM is used to 

detect the DDoS attacks that it has learned from the 

dataset whereas Self Organizing Map model can be 

used to detect new types of attacks. While SVM and 

Self Organizing Maps independently gave an 

accuracy of 82.31% and 93.243%, respectively, a 

combination of the 2 gave an accuracy of 98.12%. 

 

Lawal and Nuray [6], have proposed a method in 

which threshold value T is used and once the traffic 

in the network crosses the threshold T, then the 

sFlow management system generates traffic rules for 

handling such high traffic and sends it to the 

controller. The sFlow is a real-time traffic sampling 

technology that is used for monitoring traffic in the 

network. The controller then sends OpenFlow rules 

to the switches instructing them to drop the malicious 

packets, thus reducing the effect of the attack. The 

method was tested in a Mininet network topology 

using a floodlight controller. An ICMP flood attack 

was used for simulating a DDoS attack and graphs 

were generated to analyze the traffic and flow of 

packets. 

 

Wijesinghe et al. [7] have proposed a method for the 

detection of a range of botnets in an SDN 

environment. The traffic flow among hosts is 

recorded according to the IPFIX template and that 

information is used to detect specific features of the 

bots with the help of machine learning techniques. If 

any of the hosts are found to be infected, then the 

infected hosts are removed from the rest of the 

network environment. It was observed that different 

techniques were helpful to detect different ranges of 

botnets and no specific technique was found to be 

effective for detecting all the families. 

 

Dao et al. [8], present an approach to combat 

flooding attacks against the controller in which 

spoofed requests are sent continuously, causing a 

burden on the controller-switch channel and 

overloading the flow table in the switch leading to a 

downgrade of the quality and stability of the network. 

First, the SDN environment was simulated with 

regular legitimate traffic, and also with a DDoS 

attack against the controller, and analysis was 

performed on the traffic. Let 'n' be the minimum 

number of packets sent in a connection and 'k' be the 

total number of connections held by a legitimate user. 

An attacker would have more than 'k' connections 

and transmit less than 'n' packets per connection. The 

number of unique packets sent from an IP address is 

stored by a counter 'c'. For a new packet, the system 

increments the value of 'c' of the corresponding IP 

address and if it is greater than 'k', the traffic from 

that IP address is analyzed with an average number of 

packet counter 's'.  If 's' is found to be less than 'n', it 

is assumed to be an attacking packet, and further, all 

packets originating from that IP address are blocked 

by a suitable flow rule. Thus, the controller is safe 

against DDoS attacks. 

 

The existing methods used for attack detection with 

KNN had high accuracy, but required more 

technology to determine the threshold and weight 

distribution. Dong and Sarem [9] have proposed a 

DDoS Detection Algorithm based on the Degree of 

Attack (DDADA) and DDoS Detection Algorithm 

based on Machine Learning (DAMDL) to improve 

the current condition. The attack detection method 
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based on an improved KNN with Degree of DDoS 

Attack data plane is a combination of forwarding 

elements used to forward traffic flows based on 

instructions from the control plane. They have also 

classified attacks into four major groups as HTTP, 

ICMP, UDP and SIP flood attacks. Four features are 

analyzed when the SDN controller is attacked, that is 

flow length, flow duration, flow size, and flow ratio. 

For detection, the DDADA algorithm is proposed and 

DDAML is introduced to further improve the 

efficiency. The performance is evaluated on the 

accuracy of detection, ROC and AUC metrics. The 

proposed solution is seen to perform more effectively 

than the traditional algorithms like NB algorithm, 

SVM algorithm, and others based on the obtained 

TPR, FPR, precision, F-measure and recall values. 

 

Yadav and Selvakumar [10], have used the Logistic 

regression algorithm to detect Application layer 

DDoS attacks. The dataset to train the algorithm was 

generated by simulating normal and attacking traffic 

on the nitt.edu website. The features obtained through 

simulation were further processed to construct more 

features for better analysis. The principal component 

analysis was further done to find the most important 

features. On this modified data, a Logistic Regression 

algorithm was applied and an Accuracy of 98.6% 

with a False Positive Rate of 1.41% was obtained. 

 

Traditional detection systems employ Packet level 

analysis and payload examination as the dominant 

methods for identifying malicious network traffic. 

The system examines all the incoming packs for any 

suspicious activity. The traditional methods are 

ineffective in detecting intrusions as most of the new 

DDoS attacks mimic legitimate web service traffic. 

Fouladi et al. [11] propose a stand-alone frequency 

analysis method for DDoS attack detection in which 

the traffic flow level of the network is analyzed. The 

DDoS attack is separated from normal traffic using 

coefficients of Discrete Fourier transform (DFT) and 

discrete wavelet transform (DWT). The accuracy of 

the detection is increased by using Wavelet 

transform. This is because it provides higher 

resolution information about the frequency domain. 

The separation between attack and normal traffic is 

done using a Naive Bayes classifier that has two 

frequency-based methods of DFT and DWT and 

results are compared with a simple thresholding 

classifier. The dataset has 1936 and 2649 samples of 

normal and attack traffic respectively. Three different 

feature sets including DFT, DWT, and DFT+DWT 

(combined feature) are provided to the classifier. In 

comparison to other features, the combined feature 

improves accuracy with the lowest false positive and 

false negative rates. 

 

Lakshminarasimman et al. [12] have compared two 

variants of decision tree classifiers which are J48 

algorithm and Random forests for detecting the 

DDoS attack. J48 works in the same way as ID3 but 

uses the concept of information entropy to make the 

decision tree. Random forest algorithm consists of an 

ensemble of decision trees in which each tree gives a 

prediction and the prediction that occurs the most is 

chosen as the final prediction. The two models were 

trained on the KDD 1999 dataset. 10-fold cross-

validation was applied in the experiment for accurate 

evaluation. It was found that the J48 algorithm with 

an accuracy of 99.9415% gave better results than the 

random forest algorithm that gave 96.94%. 

 

This paper detects the attack traffic through the 

central SDN controller. In this study, a SVM is used 

in conjunction with a kernel principal component 

analysis (KPCA) and a genetic algorithm (GA) to 

improve detection accuracy. SVM techniques are the 

prime classifier for malicious traffic prediction. An 

effective way of protecting SDN was proposed and 

analyzed by three different variants of SVM. SVM 

with KPCA and GA are combined with the proposed 

approach of detection. KPCA is executed for feature 

extraction, and the SVM classification is used for the 

classification of attacks. Also, the feature differences 

are reduced by an enhanced Radial Basis Kernel 

Function (N-RBF). Genetic algorithms are also used 

to optimize various classifier parameters. The 

experimental results demonstrate that the proposed 

model is better classified with better generalization in 

comparison with the single SVM. Also, the model 

proposed can be integrated into the controller to 

specify security rules to avoid potential attacks by 

attackers [13]. 

 

This paper emphasizes that although extensive 

studies have been carried out on Denial of Service 

(DoS) attacks and mitigation of the DDoS attacks, 

such attacks remain difficult to be detected. This 

paper presents a flexible, modular architecture, which 

allows LR-DDoS attacks in SDN settings to be 

identified and mitigated. In particular, the authors use 

six ML model (i.e., J48, Random Tree, REP Tree, 

Random Forest, Random Perceptron (MLP), and 

SVM) in their architecture, to train the intrusion 

detection system (IDS), and to evaluate the 

performance using the CIC-DoS datasets. The 

evaluation results show that, despite the difficulty in 

identifying LR-DoS attacks, the approach achieves a 
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detection rate of 95 percent. For the simulated 

environment to be as close to real-world production 

networks, the authors also point out that, with their 

deployment, they use Mininet virtual machine 

operating system with an open network operating 

system, ONOS. The intrusion detection system 

mitigates all previous IDS attacks with their testing 

topology. This shows how useful the proposed 

architecture is for identifying and mitigating LR-

DDoS attacks [14]. 

 

Many Internet protocols have a range of flaws that 

attackers can take advantage of to launch a series of 

attacks. DNS, one of the Internet's most important 

elements, is one of these protocols. Because of the 

User Datagram Protocol (UDP) exchanges in this 

protocol, it is primarily vulnerable to DDoS attacks. 

These attacks are difficult to counter because 

attackers spoof the victim's IP address and flood it 

with valid DNS responses from legitimate DNS 

servers. The authors of this paper suggest 

WisdomSDN, an inexpensive and scalable solution 

for effectively mitigating DNS amplification attacks 

in SDN. WisdomSDN detects and mitigates illegal 

DNS requests and responses. WisdomSDN is made 

up of two parts: (1) a novel proactive and status-

based (PAS) program for one-to-one computer-

generated mapping of DNS requests with DNS 

responses; (2) a machine learning DDoS detection 

module for detecting illegal DNS requests only in 

realtime. This module consists of (a) Flow Statistics 

Collection Scheme (FSC) for effective and scalable 

collection of flow features through the sFlow 

protocol; (b) To assess the randomness of network 

traffic, an entropy estimation scheme (ECS) is used.; 

and (c) BNF is a Bayes Network-based Filtering 

system that uses entropy values to distinguish 

illegitimate DNS requests.; and (3) DNS Mitigation 

(DM) is a DNS mitigation scheme that essentially 

mitigates illegitimate DNS demands. The 

experimental findings indicate that WisdomSDN can 

effectively detect/mitigate DNS amplification attacks 

rapidly with a high detection rate, low false-positive 

rate, and less overhead as compared to the state-of-

the-art, making it a promising solution to mitigate 

DNS amplification attacks in an SDN setting [15]. 

 

The lack of trust evaluation and management 

mechanism between the OpenFlow switches is a 

major concern in SDNs especially when it comes to 

dealing with DDoS attacks. Hence to tackle this 

issue, a trust evaluation, and management model is 

proposed which is called the Intelligent Trust Model 

(ITM). The ITM consists of a network monitoring 

module and a trust evaluation module. The network 

monitoring module monitors network parameters like 

packet loss rate and time delay. Based on the 

parameters, trust evaluation is performed by the 

network intelligent trust module. The trust value is 

used to measure the degree of trust among OpenFlow 

switches. Based on real-time updation of trust values, 

the hybrid-DDoS attacks are detected quickly with 

Extreme Learning Machine (ELM). The model was 

tested on multiple types of DDoS attack 

environments to ensure the authenticity and 

effectiveness of obtained results [16]. 

 

To tackle the issue of DDoS attacks in the SDN-

based cloud environment, a hybrid machine learning 

model has been proposed which is based on a support 

vector machine and self-organizing map algorithm 

which helps in enhancing the classification of the 

network traffic. A statistic sender sends a request to 

the OpenFlow switch which returns response data 

and that data is processed in the Raw Data Processing 

module. Then the processed data is sent to an 

appropriate and trained SVM classifier. Another IP 

filtering scheme is introduced that is based on 

enhanced history which improves the rate of 

detection of DDoS attacks. It uses a predefined set of 

parameters to distinguish between normal and attack 

source. The combination of the mentioned techniques 

provides a DDoS attack defender which is used in the 

SDN cloud-based environment. The proposed 

solution aims to deliver protection against attacks 

along with ensuring a better quality of service to 

cloud customers [17]. 

 

The vulnerability of SDNs due to the presence of a 

single point of failure by DDoS attacks is proposed to 

be tackled with the help of a defense and attack 

detection framework in the SDN environment. A 

periodic trigger is used for the detection of DDoS 

attacks and the detection cycle period plays an 

important role in the detection efficiency and the 

controller's performance. The detection trigger 

mechanism is deployed in the data plane to reduce 

the resource burden on the controller and minimize 

communication overhead between the controller and 

the switches. The classification-based detection 

method requires the selection of important flow 

features that affect the accuracy of the algorithm. 

These selections are made based on certain 

parameters such as average byte stream rate, stream 

duration, percentage of symmetric flows, and traffic 

surge analysis. Finally, a combined machine learning 

algorithm that consists of K-Means and KNN is used 

to detect DDoS attacks and maintain a proper balance 
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between the accuracy and efficiency of detection. 

Once the attack is detected, it is mitigated by the 

controller adding a flow entry in the switch to drop 

attack packets. The malicious flow entries are also 

removed to release occupied storage space [18].  

 

Alamri and Thayananthan [19] have worked on a 

DDoS detection and mitigation system which 

comprises 2 components, a bandwidth control 

mechanism and a machine learning-based detection 

system that uses the XGBoost model. In the 

bandwidth control mechanism, 3 threshold profiles 

would be calculated to classify the flow based on 

time and byte rate. The three thresholds are low 

traffic threshold profile, medium traffic threshold 

profile, and heavy traffic threshold profile, which will 

be used based on the time of the day. Any time the 

network flow crosses the threshold chosen based on 

the time of the day, the bandwidth for that flow is 

reduced by half. The detection system consists of the 

XGBoost model that is used to classify whether a 

flow is normal or malicious. The system consists of 3 

main phases, the monitoring phase where the network 

flow is compared with the threshold to see if it 

exceeds or not, the bandwidth control phase where 

the bandwidth is halved and a counter is maintained 

to calculate how many times the traffic has exceeded 

the threshold value, and finally, the detection and 

mitigation phase, where the flow statistics are sent to 

the XGBoost classifier to classify if the flow is 

normal or malicious, once the counter reaches a 

threshold. Various machine learning models such as 

Logistic Regression, Naive Bayes, random forest, etc 

were trained and tested but finally, the XGBoost 

model was chosen on account of very high accuracy. 

Wang et al, discuss a new type of DDoS attack called 

link flooding attack (LFA) that targets high traffic, 

vulnerable links in the network and suggest a novel 

software designed by them called LDADefender, to 

detect and mitigate them in an SDN environment. 

LFA has 2 crucial characteristics, firstly, it uses large 

scale slow-speed legitimate flows to initiate the 

attack, and secondly, due to its adaptive nature, it can 

change the target victim link in real-time thus making 

it difficult for traditional defense mechanisms to 

detect it. The software consists of 4 stages, namely, 

target link selection, where the potential victim links 

with high flow density are identified, link congestion 

monitoring, where a monitoring agent is deployed at 

each identified target link to be able to capture and 

send the flow statistics from the link to the controller, 

traffic rerouting, where the traffic at congested links 

are rerouted to decongest the link and to temporarily 

mitigate the DDoS attack and finally the malicious 

traffic blockings where the LFA bots are identified 

and cut off from the network using flow rules. The 

LDADefender was tested on CloudLab and it could 

successfully detect bots with an accuracy of over 

90pc [20]. 

 

Jia et al. [21] have proposed a defense mechanism 

against IoT-based DDoS attacks called Flowguard, 

which comprises two modules, Flow Filter and Flow 

Handler. The Flow Handler outputs flow rules based 

on the network traffic and the Flow Filter filters the 

incoming packets based on these generated rules. The 

rules are generated using self-evolving machine 

learning/deep learning models. The dataset used is 

the CICDDoS2019 dataset, which contains various 

types of DDoS attacks, such as Flooding Attacks as 

well as Slow request/Response attacks. The network 

traffic is generated using edge devices (IoT Devices), 

and this data is processed and analyzed at edge 

servers. Two models are used, a Long Short-term 

Memory (LSTM) model to identify an attack and a 

Convolutional Neural Network (CNN) to classify the 

type of attack. The model developed performed at an 

accuracy of 98.9% in identifying new attacks, and 

99.9% in classifying the exact type of attack. Thus, 

Deep Learning models have been used to effectively 

detect and mitigate IoT-based DDoS attacks. 

 

3.Methodology of proposed solution 

The proposed system consists of the SDN 

environment and detector and mitigator application 

of which a Machine Learning model is a part that 

monitors network traffic to determine when an attack 

takes place. The solution proposed consists of the 

following modules: 

 

3.1Dataset acquisition and pre-processing 

To train the Model, a vast dataset consisting of 

various types of network attacks is needed. This is 

obtained from the "DDoS attack network logs" - an 

open dataset from Kaggle. The dataset consists of 

over 2.1 million entries which are sufficient to train a 

model effectively. Several pre-processing techniques 

are applied to the dataset to obtain data in the 

required order for the Model. Feature extraction is 

also an important step so that only data that is 

necessary to detect an attack can be used to train the 

model. 

 

3.2Training and Testing 
The pre-processed dataset is split in the ratio of 80: 

20 where 80% of the data is used for training and 

20% is used for testing. The testing dataset is used for 

cross-validation, thereby helping in the analysis of 
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the model. This training dataset is trained on various 

models, such as Logistic regression, Naive Bayes 

classifier, CatBoost classifier, etc. to find the best 

performing model which took the least amount of 

training time. 

 

3.3 Predictions and analysis 
The model generated is then used for real-time 

predictions on the network traffic generated by the 

SDN environment and used in determining whether 

the traffic flow in the SDN network is attacking 

traffic or not.  Performance-based on various criteria 

such as accuracy, precision, recall, time is analyzed 

using various visual methods such as line plots, bar 

graphs, etc. 

 

3.4 Setting up the environment 
Mininet is used to set up the required SDN 

environment for testing purposes. It creates a network 

of hosts, switches, controllers, and links. 

 

3.5 Setting up SSH connection and traffic 

generation 
The botmaster uses SSH to set up a connection with 

the botnets. SSH is a protocol that allows a secure 

connection between a client and a server over an 

unsecured network. The compromised hosts then 

generate traffic with the help of hping3 which is a 

command line-oriented TCP/IP packet assembler. It 

supports TCP, UDP, ICMP, and RAW-IP protocols.  

 

3.6 Detection and mitigation 
The DDoS attack is detected by the machine learning 

model. The flow stats are retrieved with the help of 

the rest APIs provided by the RYU controller. RYU 

is a python-based controller which provides 

northbound APIs to allow communication between 

the application and the controller to fetch flow 

statistics and add/modify flow rules. Mitigation is 

achieved by updating the flow rules of the identified 

victim and the botnets after an attack is detected. 
 

Algorithm: Algorithm for detector-mitigator module  

Input: Packet Rate, Byte Rate  

Output: Mitigates DDoS attack  

Initialization:  

Load machine learning model  

Setup API to make requests 

while (true) do  

Make a GET request to the Mil.")      Northbound    

APIs to retrieve flow statistics.  

Packet Rate <- Packet count total duration in 

second 

   Byte Rate <- Byte count total duration in second  

   src (- source mac address  

 dst <- destination mac address  

 ML model input = Packet Rate, Byte Rate  

 if (model detects DDoS attack) then  

 add new flow rules to block connection 

between src and dst by making POST request to RYU 

Northbound APIs  

 end if  

end while 

 

4.Implementation 
4.1System configuration 

The SDN topology was set-up and tested on a virtual 

emulator called mininet which was running on a 

system with Ubuntu 18.04 Operating System. The 

system had 12 GB of RAM, i5 7200U CPU which is 

a dual core processor and 2GB of dedicated NVIDIA 

940MX GPU. For the purpose of the SDN controller, 

RYU was used which is a python-based controller. 

 

4.2Data exploration and feature extraction 

The dataset used consists of 28 attributes such as 

“Source address”, “Destination address”, “Node 

Name from”, “Node Name to”, etc. The target is a 

string that denotes the type of packet such as 

“Normal”, “UDP Flood”, “HTTP Flood”, “SIDDOS” 

or “Smurf”. The total number of entries in the dataset 

is 2,160,668. The dataset is examined to find any 

missing entries, and all such entries are discarded. 

The string values are in byte format, and thus have to 

be first decoded into “UTF-8” format. The target 

attribute is then converted into integer values as most 

Machine Learning algorithms need the target 

attribute to be a numerical value. A statistical 

description of the dataset, using PACKET RATE and 

BYTE RATE as the main parameters is shown in 

Tables 1 and Table 2. It includes the values of the 

total number of data entries, mean, standard 

deviation, minimum value, quartiles, and maximum 

value. 

 

 

Table 1 Statistical description of the dataset with respect to 'PKT_RATE' 
Class Count Mean std min 25% 50% 75% max 

Normal 1935959 288.5207 91.05149 0.9779570 328.0642 328.2178 328.4318 658.0904 

HTTP-Flood 4110 26.928764 16.124078 22.967447 23.041765 23.108231 23.175081 94.721200 

UDP-Flood 201344 940.048809 221.670555 0.977957 962.68497 1016.4372 1016.522962 1118.279350 

Smurf 12590 197.478455 147.136010 0.977958 23.161680 328.063862 328.264040 658.090443 
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Class Count Mean std min 25% 50% 75% max 

SIDDOS 6665 104.976245 48.120505 0.992637 94.7212 94.7212 94.7212 658.090443 

 

Table 2 Statistical description of the dataset for „BYTE_RATE‟ 
Class Count Mean std min 25% 50% 75% max 

Normal 1935959 232456.9 224611.7 53.78760 18056.40 124942 505437 1438057 

HTTP-Flood 4110 725682.3 459193.2 5209.670 325885.9 726208.8 1130920 1519216 

UDP-Flood 201344 1271845 452197.7 53.78770 1.147520 1524630 1524780 1677420 

Smurf 12590 630728.1 630263.3 53.78770 18067 505434 1509180 1521430 

SIDDOS 6665 18595.943463 76993.119007 1528.66 5209.67 5209.67 5209.67 505985 

 

To reduce the number of features, the attributes are 

analyzed using the Chi-Square test, which is shown 

in the equation: 

  
  

 (     )
 

  
    (1)  

where χc
2
 is the Chi-square value, Oi is the Number of 

observations in class i, and Ei is the number of 

expected observations in class i if there is no 

relationship between the feature and the target. Thus, 

the Chi-square test works by finding the relationship 

between the independent attribute (predictor values) 

and the dependant attribute (target value). A higher 

Chi-square score indicates a higher relationship 

between the dependent and independent attribute, 

meaning that a change in the predictor value will 

influence a change in the target value. The results of 

the chi-square analysis are shown in Figure 1, 

through which it is evident that the attributes “Packet 

Rate” and “Byte Rate” are the most important 

features for determining whether a packet is normal 

traffic or attacking traffic. The 3D visualization of the 

modified dataset can be seen in Figure 2, where there 

is a clear distinction between normal packets and 

attacking packets. The two parameters chosen from 

the dataset are PACKET_RATE and BYTE_RATE. 

It is observed that as the value of these two 

parameters increases, so does the probability that the 

packet is of attacking traffic. The Chi-square values 

of the top five parameters are given below in Table 3. 

 

 

Table 3 Top 5 Chi-square values of parameters 

Parameter Chi-Square value 

PACKET_RATE 0.20814693 

BYTE_RATE 0.15693363 

FLAGS 0.08422273 

PKT_SEND_TIME 0.05499739 

 

4.3Training model 
A comparison of various Machine learning models is 

performed to determine a model that would give the 

most accurate results while taking the least amount of 

time to train. The different models which have been 

experimented with are CatBoost Classifier, XGBoost 

classifier, logistic regression, Naive Bayes classifier, 

Decision Tree classifier, and KNN classifier. 

 

 

 
Figure 1 Chi-Square test results 
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Figure 2 3D visualization of dataset 

 

Both the Boosting algorithms have been trained on 

100 epochs. The performance of each of the models 

is measured using different metrics such as accuracy, 

precision, recall. Training time has also been used as 

a metric for analysis as DDoS attacks need to be 

identified as fast as possible to prevent loss to the 

organization. The Matplotlib library of python is used 

to visualize the results for better understanding. The 

Loss vs Epoch during the training of the CatBoost 

classifier is shown in Figure 3 and Loss vs Epoch 

during cross-validation is shown in Figure 4. It can 

be seen that the model reaches the local minima 10 

epochs into training whereas it takes 90 epochs 

during cross-validation. 

 

 

 
Figure 3 Training loss vs epoch graph 

 

 



International Journal of Advanced Technology and Engineering Exploration, Vol 8(76)                                                                                                             

455          

 

 
Figure 4 Cross-Validation loss vs epoch graph 

 

4.4Setting up SDN environment 

Mininet is used to simulate the SDN environment 

where DDoS attack, its detection, and mitigation are 

tested. A topology is designed as shown in Figure 5. 

The SDN network designed for this experiment is a 

standard TreeNet topology available in Mininet. This 

topology has two parameters depth and fanout which 

have been set to 3 and 2 respectively. The depth 

indicates the number of levels of switches that will be 

present in the topology and the fanout is the number 

of child nodes each parent node would have. The first 

three layers consist of a total of 7 switches and the 

last layer consists of 8 hosts, each switch in the 

penultimate layer having 2 hosts each. A single Ryu 

controller is connected to the root switch. In the 

experiment, the host h1 (IP 10.0.0.1) will act as the 

botmaster, host h3(IP 10.0.0.3) will act as the victim 

host, and hosts h7 (10.0.0.7) and h8 (10.0.0.8) act as 

the botnet. For a controller in the SDN network, RYU 

is used which is a python-based controller. RYU's 

northbound APIs which are in the form of rest APIs 

provide flow information between DataPath and 

enable deployment or modification of flow rules in 

the SDN network. The packet rate and byte rate after 

being retrieved from the APIs is given as input to the 

machine learning model which classifies the flow as 

normal traffic or DDoS attack. Figure 6 shows the 

block diagram of the proposed solution. 

 

 

 
Figure 5 SDN topology 
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Figure 6 Block diagram of the proposed Solution 

 

4.5Connection setup and traffic generation 

The botmaster executed a script that took control 

over the botnets using an SSH connection. The 

command-line tool hping3 is used to generate both 

normal and DDoS UDP traffic. Normal traffic in this 

experiment is the traffic generated to represent the 

traffic generated by a non-malicious user on the 

network. First, normal traffic is generated and then 

the victim is bombarded with UDP flood traffic by 

the two SSH botnets. A DDoS attack is simulated and 

the change in flow rate is observed and analyzed 

through Wireshark. 

 

4.6Detection and mitigation 

For detection and mitigation of attack, an SDN 

application running over the controller is written in 

python which will communicate with the controller 

and retrieve required flow stats i.e., packet rate and 

byte rate along with the source and destination mac 

addresses of the flow at the desired interface. The 

retrieved data is fed to the model as input in a 

continuous manner to detect the attack. After an 

attack is detected by the ML model, the already 

fetched source and destination mac addresses 

between which the DDoS traffic was observed, are 

used as the match parameters to deploy the flow rules 

onto the switch using the RYU Northbound APIs, 

thus preventing further communication between the 

hosts. 

 

5.Results 
The DDoS attack in Mininet is simulated. Normal 

traffic is simulated until the 75th second after which 

the DDoS attack starts. The sudden change in the 

packet rate signifies the start of the DDoS attack by 

the botnet. The packets/sec vs time is plotted for the 

whole duration of the experiment and is shown in 

Figure 7. 

 

The detector-mitigator module is now added and the 

same experiment is simulated in the same conditions. 

This time too, normal traffic is generated until the 

75th second and then the DDoS attack starts. The 

detector-mitigator module can detect the DDoS 

attack and can deploy the necessary flow rules to 

mitigate the attack. The sudden decrease in packet 

rate signifies the mitigation of the DDoS attack due 

to the deployment of the flow rules. The packets/sec 

vs time is plotted for the whole duration of the 

experiment and is shown in Figure 8. 

 

When the DDoS attack is initiated, the detector-

mitigator SDN application running on top of the 

controller retrieves the packet rate and byte rate from 

the Ryu Northbound APIs and passes them as input 

to the machine learning model in the SDN 

application for detection of DDoS attack. When the 

attack is detected, the mitigator part deploys flow 

rules to disable the connection between the botnet 

and the victim through the Ryu Northbound APIs. 

The sudden decrease in packet rate observed in the 

graph is due to the blocking of connection between 

victim and botnet after detection. Two peaks are 

observed as there are 2 hosts in the botnet and there is 

a minute time gap during the detection and mitigation 

of the attack between the 2 hosts in the botnet 
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The detector-mitigator SDN application running on 

the controller takes in packet rate and byte rate as 

input and passes them as input to the machine 

learning model. If a DDoS attack is detected then the 

following message is printed as shown in Figure 9. 

 

Once a DDoS attack is detected, flow rules are 

deployed by the SDN application to the required 

switches using the RYU Northbound APIs. The last 

two rules in Figure 10 are the rules deployed to 

mitigate the attacks. 

 

Once the flow rules are deployed the communication 

between the bots in the botnet and the victim host is 

completely blocked. It is evident when the 'pinball 

command is used. All the connections exist except 

the connection between the botnet and the victim 

host. This is shown in Figure 11. 

 

Six Machine Learning models were tested based on 

the literature survey done namely the Catboost 

model, XGBoost model [2,19], K-Nearest Neighbour 

Model [9], Logistic Regression Model [10], Decision 

Tree model [12,14], and Gaussian Naive Bayes 

Model [14]. 

 

It is seen in Figure 12 that Catboost, XGBoost, and 

K-Nearest Neighbours all gave the highest accuracy 

of 98% followed by Gaussian Naive Bayes with an 

accuracy of 97%, followed by Decision Trees and 

Logistic Regression which gave the lowest accuracy 

of 89%. 

 

 

 
Figure 7 Packets/sec vs time graph at the victim host interface 

 

 
Figure 8 Packets/sec vs time graph at victim host interface after deploying the SDN application 

 

 
Figure 9 Output of the detector-mitigator SDN application written in python 
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Figure 10 Flow rules added at the necessary switch 

 

 
Figure 11 Result of pingall command 

 

 
Figure 12 Accuracy of the models tested 

 

The training time for all the six models is also 

observed and it is seen in Figure 13 that XGBoost 

had the highest training time which is undesirable, 

followed by K-Nearest Neighbour, followed by 

Catboost and Logistic Regression which roughly had 

the same time, followed by Decision Tree and finally 

Gaussian Naive Bayes which had the least training 

time. On account of both accuracy and training time, 

it is evident that Catboost is the best model to choose 

from the current set due to its very high accuracy and 

low training time when compared to other models 

with similar high accuracies. The values of Accuracy 

and Training time for all of the models is given in 

Table 4. It is seen in Table 4 that the highest accuracy 

of 98.62% is obtained by using the CatBoost 

classifier, as well as other classifiers such as 

XGBoost and KNN. However, among the models 

with the highest accuracy, it is observed that the 

CatBoost classifier has the least training time of 119 

seconds, followed by 149 seconds for the KNN 

classifier. XGBoost has the highest training time of 

658.5 seconds, which is almost 5.5 times the training 

time of CatBoost. The table also provides other 

measures of performance such as precision, recall, 

and F1-score. It is observed that CatBoost, XGBoost, 

and KNN have the best values of precision and F1-

score. XGBoost has a better Recall score than the 

other two models by 0.01. 
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Figure 13 Training time of the model tested 

 

Table 4 Quantitative comparison of Accuracy and Training time of all the models experimented 

ML Model Accuracy Precision Recall F1 - Score Training Time 

(seconds) 

CatBoost 0.9862 0.97 0.82 0.86 119 

XGBoost [2,19] 0.9862 0.97 0.83 0.86 658.571 

Decision Tree 

[12,14] 

0.8980 0.29 0.26 0.27  

 2.293     

K Nearest 

Neighbours 

(KNN) [9] 

0.9862 0.97 0.82 0.86  

 149.159     

Logistic regression 

[10] 

0.8980 0.29 0.26 0.27  

 111.693     

Gaussian Naive 

Bayes [14] 

0.9757 0.46 0.50   

 0.47 0.273    

 

6.Discussion 
Catboost algorithm, launched in 2017 is a relatively 

new algorithm that provides various features like fast 

prediction, improved accuracy, a requirement of 

minimal hyperparameter tuning, etc. when compared 

to its counterpart. The lack of its usage in the 

networking domain prompted the team to test this 

algorithm out in detecting DDoS attacks in an SDN 

environment. From the results, it is evident that while 

the accuracy of the Catboost algorithm is similar to 

KNN and XGBoost, the training time is less when 

compared to KNN and XGBoost. There are certain 

limitations to the approach and the experimentation 

performed. The first being that two parameters packet 

rate and byte rate are considered for analysis. There 

could be more parameters that might affect the 

accuracy but due to limitations of the API used, 

parameters that can provide optimal results among all 

available parameters are considered. Another 

limitation can be the cases of false positives where 

some genuine host with a large number of requests 

might be considered to be an attacker and blocked 

from further communication. The experiment was 

carried out on RYU controller as it provides 

northbound APIs which delivered the parameters 

required for the analysis. Hence, some other 

controller might not be able to fulfill the objective of 

the experiment. Also, the analysis was only 

performed on UDP packets hence it can be further 

improved by testing more types of network packets. 
 

7.Conclusion and future scope 
In this experiment, a DDoS attack is simulated in an 

SDN environment using an SSH botnet. To detect 

and mitigate such an attack, an SDN application that 

runs on the controller is written in python to detect 

the attack using a machine learning model and 

mitigate the attack using flow rules. For the detection 

part, six models are used namely Catboost, XGBoost, 

Logistic Regression, Gaussian Naive Bayes, and 
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Decision Tree. it is observed that the Catboost model, 

despite having the same accuracy as the XGBoost 

model and K-Nearest Neighbour model, is chosen as 

the better model when compared to the rest on 

account of its training time. The future scope of this 

research includes,  

1. Testing the detector-mitigator module for other 

types of attacks such as HyperText Transfer 

Protocol flood attack, Ping flood attacks, etc. 

2. Increasing the number of attributes used for 

prediction by the detector module to increase the 

accuracy.  

3. Detection of the botmaster and limiting its 

activities in the network 
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