
International Journal of Advanced Technology and Engineering Exploration, Vol 8(76)

ISSN (Print): 2394-5443 ISSN (Online): 2394-7454

http://dx.doi.org/10.19101/IJATEE.2021.874021

445

Detection and mitigation of botnet based DDoS attacks using catboost

machine learning algorithm in SDN environment

Sanjeetha R
*
, Anant Raj, Kolli Saivenu, Mumtaz Irteqa Ahmed, Sathvik B

and Anita Kanavalli

Department of Computer Science and Engineering at MS Ramaiah Institute of Technology, India

Received: 08-February-2021; Revised: 18-March-2021; Accepted: 21-March-2021

©2021 Sanjeetha R et al. This is an open access article distributed under the Creative Commons Attribution (CC BY) License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1.Introduction
1.1Background

Software-Defined Networks is an emerging new

technology in the field of networks that had a lot of

impact in fields such as cloud computing and data

centers. In traditional networks, the data plane, which

is responsible for the forwarding of data, and the

control plane, which decides the path of the packet

are tightly coupled. But in software-defined

networks, the control plane and data plane are

separated. A special device called the controller acts

as the control plane. The switches act as the data

plane which forwards the packets based on the flow

rules defined by the controller.

*Author for correspondence

The controller is connected to all the switches and the

controller communicates with the switches using a

secured protocol called OpenFlow. Such a system

encourages modularity, freedom to choose the

software and the hardware, and is quite robust when

deployed as a network.

The introduction of SDN brought in certain

advantages that were absent in traditional networks,

but such networks are still susceptible to DDoS

attacks which can disrupt all the services in the

network. This requires the SDN to have an efficient,

quick and accurate detection and mitigation

mechanism for such attacks. The use of XGBoost is

proposed for the purpose of DDoS attack detection

and has been observed to outperform traditional

algorithms such as Support Vector Machine (SVM)

and random forest in terms of accuracy and speed [1].

Research Article

Abstract
Software-defined networking (SDN) is an emerging new technology in the field of networks that facilitates comprehensive

network programmability, which makes them prone to network attacks. One of the primitive yet highly effective network

attacks is the Distributed Denial-of-Service (DDoS). DDoS attacks are launched from the compromised hosts called

botnets acquired by the attacker host called the botmaster, all being connected to switches present in the same

environment. Despite the large number of traditional mitigation solutions that exist today, DDoS attacks continue to grow

severely. Numerous solutions have been proposed to counter these attacks and prevent service disruptions which have

cost many companies a fortune. An extensive literature survey of existing solutions to these security challenges in an

SDN environment, that employed machine learning techniques like XGBoost, Support Vector Machine (SVM), etc., has

addressed the detection of DDoS attacks. But still showed the scope of improvement in detection speeds which could

significantly reduce the service unavailability time from a server i.e., the victim of the DDoS attack. Thus, this paper

addresses these requirements to build an optimal, reliable, and quick DDoS detection and mitigation application. This

application leverages the controller's functionalities, continuously monitors the network traffic at a particular host

interface (potential victim) to detect abnormal traffic. When the traffic is identified as a potential DDoS attack, its

mitigation is initiated. The DDoS attack traffic is mitigated by deploying flow rules onto the switches such that it blocks

the attack traffic from entering the network. The application uses CatBoost classifier, the boosting algorithm which has

very less prediction time and is comparatively 8× faster than XGBoost, because of its symmetric tree structure. It is tested

to be proven reliable and efficient in detecting botnet-based DDoS attacks on the SDN environment with an accuracy of

98% and far less training time. Thus, proving that the proposed solution employing the state-of-the-art machine learning

model can be more effective in quickly detecting and mitigating a DDoS attack.

Keywords
SDN, Botnet, DDoS, Machine learning, Catboost.

Sanjeetha R et al.

446

The detection process can be improved further by

trying out newer algorithms like CatBoost which are

supposed to perform better than the ones that are

proposed and mentioned.

Research has been done with the use of a third-party

application on top of the existing network topology

for mitigation of the attack by determining the

attacker address with the help of the traffic

information collected while monitoring the network

flow and a Firewall is used to drop the attack packets

from identified source [2]. This method suggests a

way to stop the DDoS attack by analyzing network

traffic and provides motivation for development of a

similar application on top of the SDN that handles the

mitigation part.

Today, SDN has attracted a lot of industrial and

academic interest as a digital technology that

promotes network management and offers new ways

to dynamically control and execute networks. DDoS

attacks are more prevalent in traditional networks.

One way of performing a DDoS attack is using

botnets. An intruder can create botnets by installing

malware into the hosts and later use them to perform

DDoS attacks on a server. Such attacks can also be

used on a server present in SDN environment. While

there are many standard mitigation techniques, DDoS

attacks are still widespread today. Many ideas have

been suggested to combat these attacks and to

discourage service disturbances that have cost a lot to

many businesses. A comprehensive literature study

on current solutions in an SDN environment to such

security problems, using machine-learning techniques

like XGBoost, SVMs, and so on, showed that such

techniques tackled DDoS-attacks well, but there is

still scope for improvement for attack identification,

which could greatly reduce the service disruption

time for the server.

1.2Machine learning models

The machine learning models are of two types. One

is the supervised learning model and the other is the

unsupervised learning model. A supervised learning

model has predefined labels or classes in the dataset

that are to be predicted, whereas the unsupervised

learning model finds hidden structure in a given

dataset without the help of any labels.

Any of the above-mentioned models need a dataset

for training. A dataset can differ based on our

objectives and the type of learning model that we are

making. The dataset is pre-processed and the most

important attributes affecting the model are derived.

The model is trained on a certain ratio of the dataset

and the rest is used for testing purposes. Based on test

set results, we determine the accuracy of the model.

The model can be used in different files by

converting it into the form of a package. Usually, the

model is converted to a pickle file and is used in the

application. Some of the supervised learning models

used throughout the experimentation are mentioned

below.

Logistic regression is one of the simplest models of

the classification problem. In this model, the dataset

is used to train the various parameters/coefficients of

the equation of the model, and the output of the

model are passed as input to the sigmoid function to

obtain a value between 0 and 1. The obtained value

gives the probability of whether the hypothesis of the

model is true.

The decision tree algorithm is a supervised learning

algorithm that can be used for both classification and

regression tasks. In this model, a treelike graph is

created in which each node represents the attribute,

each edge represents a value in the parent attribute

node, it is connected to and the leaf nodes represent

the classes of the classification problem.

Mathematical techniques such as the Gini index,

information gain is used to find the most important

attributes of the classification problem, and the tree is

built accordingly from top to bottom. Each new tuple

starts traversing from the root and follows the path

based on its attribute values till it reaches the leaf

which gives the class prediction.

The Gaussian Naive Bayes algorithm is another

supervised learning algorithm that works on the

principle of the Bayes theorem of probability to

predict the unknown class. It assumes that every

attribute used for prediction is independent of each

other and that each attribute makes an equal

contribution to the prediction of the class. Since the

dataset used has real value attributes, the Gaussian

Naive Bayes are used for prediction. In this method,

the posterior probability of each hypothesis/class is

calculated using the prior probability and the

hypothesis/class which has the highest priority is

taken as the prediction.

XGBoost is another supervised algorithm that uses

gradient boosted decision trees. It is one of the most

powerful machine learning algorithms out there. It

uses the principle of gradient boosting to get better

results over convention decision trees. Boosting is an

ensemble technique employed to increase the model

International Journal of Advanced Technology and Engineering Exploration, Vol 8(76)

447

accuracy by retraining the model on incorrectly

predicted tuples in the training phase to get the

correct outcome for the tuple. Gradient boosting is a

new approach where new models are created that

predict the errors of the previous models and the

cumulative results of all the models are taken

together to give the final prediction. It is named

gradient boosting as it makes use of a gradient

descent algorithm to minimize the loss in the model

during training.

K-Nearest Neighbors is a supervised learning

algorithm in the “lazy learners‟ category”. Each time

a new tuple is fed to the model, the model calculates

the distance between the tuple and all the other tuples

in the dataset and takes the K-nearest tuples and the

class that occurs the highest number of times in the k-

tuples is assigned as the prediction to the new tuple.

For this algorithm, K is an important parameter that

must be determined for the algorithm for high

accuracy.

CatBoost, which is observed to be superior when

compared to the other models in this experiment, is a

new open-sourced supervised learning algorithm

developed by Yandex in 2017. It utilizes gradient

boosting on decision trees. It has a faster training

time when compared to other gradient boosting

algorithms. Another unique feature of this algorithm

is that it will automatically handle categorical

features by converting them into numerical features.

Thus, this paper proposes an optimal and reliable

DDoS detection and mitigation technique to prevent

DDoS attacks. The technique design and

development is done after extensively studying the

existing areas of research in a similar field of interest.

Comparisons of the advantages and disadvantages of

the existing or proposed solutions using multiple

Machine Learning models for detecting the DDoS

attack in an SDN environment paved the way for the

development of the detection and mitigation module

that tries to overcome these disadvantages and

provide for a more efficient and reliable solution. The

technique involves simulating a Botnet-based DDoS

attack in an SDN environment, constructed using

Mininet. The controller used for the SDN network is

the RYU controller. One host is considered as the

Botmaster which then takes control of some of the

other hosts through SSH connections, constituting the

botnet. These infected hosts then initiate a UDP-

Flood DDoS attack on the victim server.

A machine learning algorithm (CatBoost) is used to

detect such attacks in real-time. A Software Defined

Network Application written in python that uses the

Catboost model for the detection of a DDoS attack is

deployed as an external module that interacts with the

controller using REST APIs querying for network

traffic data. Once a DDoS attack is detected in the

network, the hosts responsible for the attack are

identified and then the mitigation of the attack is

performed by installing flow rules into switches.

These flow rules deployed, block all the incoming

traffic from the infected hosts, and thus the DDoS

attack is mitigated.

The main contributions of this paper can be

summarized as follows:

 Development of a novel and faster application,

built on top of the controller for DDoS detection.

 Using state-of-the-art machine learning techniques

for increased detection efficiency.

 Implementation of a flow rule generation scheme

to mitigate the effects of the DDoS attack by

disrupting the connection between the botnet and

the victim within the SDN.

 Evaluation of the performance of the proposed

solution by testing in a simulated environment by

inducing a DDoS attack.

 Visual Representation of the performance of the

network using suitable graphs.

2.Literature survey
Chen et al., have used XGBoost classifier for

classifying whether the attack is a DDoS attack or

not. XGBoost is an ensemble of decision trees that

uses boosting principles to improve performance. In

comparison, it was noted that while Support Vector

Machine, Random Forests, and Gradient Boosted

Decision trees gave an accuracy of 97.19%, 96.33%,

and 97.69% respectively, XGBoost topped with

98.53% accuracy. The running time of XGBoost is

only higher than Random Forest with a time interval

of 11 seconds. Overall, from all the models tested, it

was inferred that XGBoost gave the best results [1].

Another method uses the traffic analyzer to collect

flow information in a synchronized manner and

incoming packets are compared with expected

packets. The top command is used to monitor

network traffic and forward results to another file and

analyses are done to check for an attack. To reduce

false alarms, the next flow is monitored to check

whether packets are still being sent by a particular

address. If yes, then the address is forwarded to the

firewall so that packets from the attacker can be

dropped otherwise the client will be considered a

normal client. A firewall is placed in the controller

Sanjeetha R et al.

448

(POX controller in this case). The performance

overhead was observed to be low due to less CPU

usage as the firewall program was used only in the

controller and not in the clients [2].

Reflective DDoS attacks are those in which the

attacker sends a request packet to an exploitable

proxy server with a spoofed IP address (which is the

IP address of the victim to be attacked). This proxy

server sends the response messages to the victim,

which results in exhaustion of its resources. To detect

and mitigate such an attack, incoming packets are

classified as legitimate or illegitimate using NAT

(Network address translator). A differentiator

separates requests from the responses as Reflective

attacks are possible only by the responses. After

detecting an attack, the mitigation system comes into

action which updates flow rules to block attacking

traffic [3].

A way to organize a DDoS attack is the Slow HTTP

DDoS attack, in which incomplete HTTP GET

messages are sent to the target server. The server

maintains these connections expecting the sender to

complete the message. If a lot of such messages are

sent by different hosts (through a botnet), it can

consume the resources of the target, and thus

legitimate clients cannot access the server. The

mitigation system proposed uses a threshold for the

number of open connections, and if at any given time,

the number of open connections exceeds the

threshold, the controller with the help of SHDA

(Slow HTTP DDoS Defense Application) performs

timeout-based attack detection and isolates the

attackers [4].

Deepa et al. [5] have proposed a 2-model concept for

SDN attacks. One model is a SVM model followed

by a Self-Organizing map model; SVM is used to

detect the DDoS attacks that it has learned from the

dataset whereas Self Organizing Map model can be

used to detect new types of attacks. While SVM and

Self Organizing Maps independently gave an

accuracy of 82.31% and 93.243%, respectively, a

combination of the 2 gave an accuracy of 98.12%.

Lawal and Nuray [6], have proposed a method in

which threshold value T is used and once the traffic

in the network crosses the threshold T, then the

sFlow management system generates traffic rules for

handling such high traffic and sends it to the

controller. The sFlow is a real-time traffic sampling

technology that is used for monitoring traffic in the

network. The controller then sends OpenFlow rules

to the switches instructing them to drop the malicious

packets, thus reducing the effect of the attack. The

method was tested in a Mininet network topology

using a floodlight controller. An ICMP flood attack

was used for simulating a DDoS attack and graphs

were generated to analyze the traffic and flow of

packets.

Wijesinghe et al. [7] have proposed a method for the

detection of a range of botnets in an SDN

environment. The traffic flow among hosts is

recorded according to the IPFIX template and that

information is used to detect specific features of the

bots with the help of machine learning techniques. If

any of the hosts are found to be infected, then the

infected hosts are removed from the rest of the

network environment. It was observed that different

techniques were helpful to detect different ranges of

botnets and no specific technique was found to be

effective for detecting all the families.

Dao et al. [8], present an approach to combat

flooding attacks against the controller in which

spoofed requests are sent continuously, causing a

burden on the controller-switch channel and

overloading the flow table in the switch leading to a

downgrade of the quality and stability of the network.

First, the SDN environment was simulated with

regular legitimate traffic, and also with a DDoS

attack against the controller, and analysis was

performed on the traffic. Let 'n' be the minimum

number of packets sent in a connection and 'k' be the

total number of connections held by a legitimate user.

An attacker would have more than 'k' connections

and transmit less than 'n' packets per connection. The

number of unique packets sent from an IP address is

stored by a counter 'c'. For a new packet, the system

increments the value of 'c' of the corresponding IP

address and if it is greater than 'k', the traffic from

that IP address is analyzed with an average number of

packet counter 's'. If 's' is found to be less than 'n', it

is assumed to be an attacking packet, and further, all

packets originating from that IP address are blocked

by a suitable flow rule. Thus, the controller is safe

against DDoS attacks.

The existing methods used for attack detection with

KNN had high accuracy, but required more

technology to determine the threshold and weight

distribution. Dong and Sarem [9] have proposed a

DDoS Detection Algorithm based on the Degree of

Attack (DDADA) and DDoS Detection Algorithm

based on Machine Learning (DAMDL) to improve

the current condition. The attack detection method

International Journal of Advanced Technology and Engineering Exploration, Vol 8(76)

449

based on an improved KNN with Degree of DDoS

Attack data plane is a combination of forwarding

elements used to forward traffic flows based on

instructions from the control plane. They have also

classified attacks into four major groups as HTTP,

ICMP, UDP and SIP flood attacks. Four features are

analyzed when the SDN controller is attacked, that is

flow length, flow duration, flow size, and flow ratio.

For detection, the DDADA algorithm is proposed and

DDAML is introduced to further improve the

efficiency. The performance is evaluated on the

accuracy of detection, ROC and AUC metrics. The

proposed solution is seen to perform more effectively

than the traditional algorithms like NB algorithm,

SVM algorithm, and others based on the obtained

TPR, FPR, precision, F-measure and recall values.

Yadav and Selvakumar [10], have used the Logistic

regression algorithm to detect Application layer

DDoS attacks. The dataset to train the algorithm was

generated by simulating normal and attacking traffic

on the nitt.edu website. The features obtained through

simulation were further processed to construct more

features for better analysis. The principal component

analysis was further done to find the most important

features. On this modified data, a Logistic Regression

algorithm was applied and an Accuracy of 98.6%

with a False Positive Rate of 1.41% was obtained.

Traditional detection systems employ Packet level

analysis and payload examination as the dominant

methods for identifying malicious network traffic.

The system examines all the incoming packs for any

suspicious activity. The traditional methods are

ineffective in detecting intrusions as most of the new

DDoS attacks mimic legitimate web service traffic.

Fouladi et al. [11] propose a stand-alone frequency

analysis method for DDoS attack detection in which

the traffic flow level of the network is analyzed. The

DDoS attack is separated from normal traffic using

coefficients of Discrete Fourier transform (DFT) and

discrete wavelet transform (DWT). The accuracy of

the detection is increased by using Wavelet

transform. This is because it provides higher

resolution information about the frequency domain.

The separation between attack and normal traffic is

done using a Naive Bayes classifier that has two

frequency-based methods of DFT and DWT and

results are compared with a simple thresholding

classifier. The dataset has 1936 and 2649 samples of

normal and attack traffic respectively. Three different

feature sets including DFT, DWT, and DFT+DWT

(combined feature) are provided to the classifier. In

comparison to other features, the combined feature

improves accuracy with the lowest false positive and

false negative rates.

Lakshminarasimman et al. [12] have compared two

variants of decision tree classifiers which are J48

algorithm and Random forests for detecting the

DDoS attack. J48 works in the same way as ID3 but

uses the concept of information entropy to make the

decision tree. Random forest algorithm consists of an

ensemble of decision trees in which each tree gives a

prediction and the prediction that occurs the most is

chosen as the final prediction. The two models were

trained on the KDD 1999 dataset. 10-fold cross-

validation was applied in the experiment for accurate

evaluation. It was found that the J48 algorithm with

an accuracy of 99.9415% gave better results than the

random forest algorithm that gave 96.94%.

This paper detects the attack traffic through the

central SDN controller. In this study, a SVM is used

in conjunction with a kernel principal component

analysis (KPCA) and a genetic algorithm (GA) to

improve detection accuracy. SVM techniques are the

prime classifier for malicious traffic prediction. An

effective way of protecting SDN was proposed and

analyzed by three different variants of SVM. SVM

with KPCA and GA are combined with the proposed

approach of detection. KPCA is executed for feature

extraction, and the SVM classification is used for the

classification of attacks. Also, the feature differences

are reduced by an enhanced Radial Basis Kernel

Function (N-RBF). Genetic algorithms are also used

to optimize various classifier parameters. The

experimental results demonstrate that the proposed

model is better classified with better generalization in

comparison with the single SVM. Also, the model

proposed can be integrated into the controller to

specify security rules to avoid potential attacks by

attackers [13].

This paper emphasizes that although extensive

studies have been carried out on Denial of Service

(DoS) attacks and mitigation of the DDoS attacks,

such attacks remain difficult to be detected. This

paper presents a flexible, modular architecture, which

allows LR-DDoS attacks in SDN settings to be

identified and mitigated. In particular, the authors use

six ML model (i.e., J48, Random Tree, REP Tree,

Random Forest, Random Perceptron (MLP), and

SVM) in their architecture, to train the intrusion

detection system (IDS), and to evaluate the

performance using the CIC-DoS datasets. The

evaluation results show that, despite the difficulty in

identifying LR-DoS attacks, the approach achieves a

Sanjeetha R et al.

450

detection rate of 95 percent. For the simulated

environment to be as close to real-world production

networks, the authors also point out that, with their

deployment, they use Mininet virtual machine

operating system with an open network operating

system, ONOS. The intrusion detection system

mitigates all previous IDS attacks with their testing

topology. This shows how useful the proposed

architecture is for identifying and mitigating LR-

DDoS attacks [14].

Many Internet protocols have a range of flaws that

attackers can take advantage of to launch a series of

attacks. DNS, one of the Internet's most important

elements, is one of these protocols. Because of the

User Datagram Protocol (UDP) exchanges in this

protocol, it is primarily vulnerable to DDoS attacks.

These attacks are difficult to counter because

attackers spoof the victim's IP address and flood it

with valid DNS responses from legitimate DNS

servers. The authors of this paper suggest

WisdomSDN, an inexpensive and scalable solution

for effectively mitigating DNS amplification attacks

in SDN. WisdomSDN detects and mitigates illegal

DNS requests and responses. WisdomSDN is made

up of two parts: (1) a novel proactive and status-

based (PAS) program for one-to-one computer-

generated mapping of DNS requests with DNS

responses; (2) a machine learning DDoS detection

module for detecting illegal DNS requests only in

realtime. This module consists of (a) Flow Statistics

Collection Scheme (FSC) for effective and scalable

collection of flow features through the sFlow

protocol; (b) To assess the randomness of network

traffic, an entropy estimation scheme (ECS) is used.;

and (c) BNF is a Bayes Network-based Filtering

system that uses entropy values to distinguish

illegitimate DNS requests.; and (3) DNS Mitigation

(DM) is a DNS mitigation scheme that essentially

mitigates illegitimate DNS demands. The

experimental findings indicate that WisdomSDN can

effectively detect/mitigate DNS amplification attacks

rapidly with a high detection rate, low false-positive

rate, and less overhead as compared to the state-of-

the-art, making it a promising solution to mitigate

DNS amplification attacks in an SDN setting [15].

The lack of trust evaluation and management

mechanism between the OpenFlow switches is a

major concern in SDNs especially when it comes to

dealing with DDoS attacks. Hence to tackle this

issue, a trust evaluation, and management model is

proposed which is called the Intelligent Trust Model

(ITM). The ITM consists of a network monitoring

module and a trust evaluation module. The network

monitoring module monitors network parameters like

packet loss rate and time delay. Based on the

parameters, trust evaluation is performed by the

network intelligent trust module. The trust value is

used to measure the degree of trust among OpenFlow

switches. Based on real-time updation of trust values,

the hybrid-DDoS attacks are detected quickly with

Extreme Learning Machine (ELM). The model was

tested on multiple types of DDoS attack

environments to ensure the authenticity and

effectiveness of obtained results [16].

To tackle the issue of DDoS attacks in the SDN-

based cloud environment, a hybrid machine learning

model has been proposed which is based on a support

vector machine and self-organizing map algorithm

which helps in enhancing the classification of the

network traffic. A statistic sender sends a request to

the OpenFlow switch which returns response data

and that data is processed in the Raw Data Processing

module. Then the processed data is sent to an

appropriate and trained SVM classifier. Another IP

filtering scheme is introduced that is based on

enhanced history which improves the rate of

detection of DDoS attacks. It uses a predefined set of

parameters to distinguish between normal and attack

source. The combination of the mentioned techniques

provides a DDoS attack defender which is used in the

SDN cloud-based environment. The proposed

solution aims to deliver protection against attacks

along with ensuring a better quality of service to

cloud customers [17].

The vulnerability of SDNs due to the presence of a

single point of failure by DDoS attacks is proposed to

be tackled with the help of a defense and attack

detection framework in the SDN environment. A

periodic trigger is used for the detection of DDoS

attacks and the detection cycle period plays an

important role in the detection efficiency and the

controller's performance. The detection trigger

mechanism is deployed in the data plane to reduce

the resource burden on the controller and minimize

communication overhead between the controller and

the switches. The classification-based detection

method requires the selection of important flow

features that affect the accuracy of the algorithm.

These selections are made based on certain

parameters such as average byte stream rate, stream

duration, percentage of symmetric flows, and traffic

surge analysis. Finally, a combined machine learning

algorithm that consists of K-Means and KNN is used

to detect DDoS attacks and maintain a proper balance

International Journal of Advanced Technology and Engineering Exploration, Vol 8(76)

451

between the accuracy and efficiency of detection.

Once the attack is detected, it is mitigated by the

controller adding a flow entry in the switch to drop

attack packets. The malicious flow entries are also

removed to release occupied storage space [18].

Alamri and Thayananthan [19] have worked on a

DDoS detection and mitigation system which

comprises 2 components, a bandwidth control

mechanism and a machine learning-based detection

system that uses the XGBoost model. In the

bandwidth control mechanism, 3 threshold profiles

would be calculated to classify the flow based on

time and byte rate. The three thresholds are low

traffic threshold profile, medium traffic threshold

profile, and heavy traffic threshold profile, which will

be used based on the time of the day. Any time the

network flow crosses the threshold chosen based on

the time of the day, the bandwidth for that flow is

reduced by half. The detection system consists of the

XGBoost model that is used to classify whether a

flow is normal or malicious. The system consists of 3

main phases, the monitoring phase where the network

flow is compared with the threshold to see if it

exceeds or not, the bandwidth control phase where

the bandwidth is halved and a counter is maintained

to calculate how many times the traffic has exceeded

the threshold value, and finally, the detection and

mitigation phase, where the flow statistics are sent to

the XGBoost classifier to classify if the flow is

normal or malicious, once the counter reaches a

threshold. Various machine learning models such as

Logistic Regression, Naive Bayes, random forest, etc

were trained and tested but finally, the XGBoost

model was chosen on account of very high accuracy.

Wang et al, discuss a new type of DDoS attack called

link flooding attack (LFA) that targets high traffic,

vulnerable links in the network and suggest a novel

software designed by them called LDADefender, to

detect and mitigate them in an SDN environment.

LFA has 2 crucial characteristics, firstly, it uses large

scale slow-speed legitimate flows to initiate the

attack, and secondly, due to its adaptive nature, it can

change the target victim link in real-time thus making

it difficult for traditional defense mechanisms to

detect it. The software consists of 4 stages, namely,

target link selection, where the potential victim links

with high flow density are identified, link congestion

monitoring, where a monitoring agent is deployed at

each identified target link to be able to capture and

send the flow statistics from the link to the controller,

traffic rerouting, where the traffic at congested links

are rerouted to decongest the link and to temporarily

mitigate the DDoS attack and finally the malicious

traffic blockings where the LFA bots are identified

and cut off from the network using flow rules. The

LDADefender was tested on CloudLab and it could

successfully detect bots with an accuracy of over

90pc [20].

Jia et al. [21] have proposed a defense mechanism

against IoT-based DDoS attacks called Flowguard,

which comprises two modules, Flow Filter and Flow

Handler. The Flow Handler outputs flow rules based

on the network traffic and the Flow Filter filters the

incoming packets based on these generated rules. The

rules are generated using self-evolving machine

learning/deep learning models. The dataset used is

the CICDDoS2019 dataset, which contains various

types of DDoS attacks, such as Flooding Attacks as

well as Slow request/Response attacks. The network

traffic is generated using edge devices (IoT Devices),

and this data is processed and analyzed at edge

servers. Two models are used, a Long Short-term

Memory (LSTM) model to identify an attack and a

Convolutional Neural Network (CNN) to classify the

type of attack. The model developed performed at an

accuracy of 98.9% in identifying new attacks, and

99.9% in classifying the exact type of attack. Thus,

Deep Learning models have been used to effectively

detect and mitigate IoT-based DDoS attacks.

3.Methodology of proposed solution

The proposed system consists of the SDN

environment and detector and mitigator application

of which a Machine Learning model is a part that

monitors network traffic to determine when an attack

takes place. The solution proposed consists of the

following modules:

3.1Dataset acquisition and pre-processing

To train the Model, a vast dataset consisting of

various types of network attacks is needed. This is

obtained from the "DDoS attack network logs" - an

open dataset from Kaggle. The dataset consists of

over 2.1 million entries which are sufficient to train a

model effectively. Several pre-processing techniques

are applied to the dataset to obtain data in the

required order for the Model. Feature extraction is

also an important step so that only data that is

necessary to detect an attack can be used to train the

model.

3.2Training and Testing
The pre-processed dataset is split in the ratio of 80:

20 where 80% of the data is used for training and

20% is used for testing. The testing dataset is used for

cross-validation, thereby helping in the analysis of

Sanjeetha R et al.

452

the model. This training dataset is trained on various

models, such as Logistic regression, Naive Bayes

classifier, CatBoost classifier, etc. to find the best

performing model which took the least amount of

training time.

3.3 Predictions and analysis
The model generated is then used for real-time

predictions on the network traffic generated by the

SDN environment and used in determining whether

the traffic flow in the SDN network is attacking

traffic or not. Performance-based on various criteria

such as accuracy, precision, recall, time is analyzed

using various visual methods such as line plots, bar

graphs, etc.

3.4 Setting up the environment
Mininet is used to set up the required SDN

environment for testing purposes. It creates a network

of hosts, switches, controllers, and links.

3.5 Setting up SSH connection and traffic

generation
The botmaster uses SSH to set up a connection with

the botnets. SSH is a protocol that allows a secure

connection between a client and a server over an

unsecured network. The compromised hosts then

generate traffic with the help of hping3 which is a

command line-oriented TCP/IP packet assembler. It

supports TCP, UDP, ICMP, and RAW-IP protocols.

3.6 Detection and mitigation
The DDoS attack is detected by the machine learning

model. The flow stats are retrieved with the help of

the rest APIs provided by the RYU controller. RYU

is a python-based controller which provides

northbound APIs to allow communication between

the application and the controller to fetch flow

statistics and add/modify flow rules. Mitigation is

achieved by updating the flow rules of the identified

victim and the botnets after an attack is detected.

Algorithm: Algorithm for detector-mitigator module

Input: Packet Rate, Byte Rate

Output: Mitigates DDoS attack

Initialization:

Load machine learning model

Setup API to make requests

while (true) do

Make a GET request to the Mil.") Northbound

APIs to retrieve flow statistics.

Packet Rate <- Packet count total duration in

second

 Byte Rate <- Byte count total duration in second

 src (- source mac address

 dst <- destination mac address

 ML model input = Packet Rate, Byte Rate

 if (model detects DDoS attack) then

 add new flow rules to block connection

between src and dst by making POST request to RYU

Northbound APIs

 end if

end while

4.Implementation
4.1System configuration

The SDN topology was set-up and tested on a virtual

emulator called mininet which was running on a

system with Ubuntu 18.04 Operating System. The

system had 12 GB of RAM, i5 7200U CPU which is

a dual core processor and 2GB of dedicated NVIDIA

940MX GPU. For the purpose of the SDN controller,

RYU was used which is a python-based controller.

4.2Data exploration and feature extraction

The dataset used consists of 28 attributes such as

“Source address”, “Destination address”, “Node

Name from”, “Node Name to”, etc. The target is a

string that denotes the type of packet such as

“Normal”, “UDP Flood”, “HTTP Flood”, “SIDDOS”

or “Smurf”. The total number of entries in the dataset

is 2,160,668. The dataset is examined to find any

missing entries, and all such entries are discarded.

The string values are in byte format, and thus have to

be first decoded into “UTF-8” format. The target

attribute is then converted into integer values as most

Machine Learning algorithms need the target

attribute to be a numerical value. A statistical

description of the dataset, using PACKET RATE and

BYTE RATE as the main parameters is shown in

Tables 1 and Table 2. It includes the values of the

total number of data entries, mean, standard

deviation, minimum value, quartiles, and maximum

value.

Table 1 Statistical description of the dataset with respect to 'PKT_RATE'
Class Count Mean std min 25% 50% 75% max

Normal 1935959 288.5207 91.05149 0.9779570 328.0642 328.2178 328.4318 658.0904

HTTP-Flood 4110 26.928764 16.124078 22.967447 23.041765 23.108231 23.175081 94.721200

UDP-Flood 201344 940.048809 221.670555 0.977957 962.68497 1016.4372 1016.522962 1118.279350

Smurf 12590 197.478455 147.136010 0.977958 23.161680 328.063862 328.264040 658.090443

International Journal of Advanced Technology and Engineering Exploration, Vol 8(76)

453

Class Count Mean std min 25% 50% 75% max

SIDDOS 6665 104.976245 48.120505 0.992637 94.7212 94.7212 94.7212 658.090443

Table 2 Statistical description of the dataset for „BYTE_RATE‟
Class Count Mean std min 25% 50% 75% max

Normal 1935959 232456.9 224611.7 53.78760 18056.40 124942 505437 1438057

HTTP-Flood 4110 725682.3 459193.2 5209.670 325885.9 726208.8 1130920 1519216

UDP-Flood 201344 1271845 452197.7 53.78770 1.147520 1524630 1524780 1677420

Smurf 12590 630728.1 630263.3 53.78770 18067 505434 1509180 1521430

SIDDOS 6665 18595.943463 76993.119007 1528.66 5209.67 5209.67 5209.67 505985

To reduce the number of features, the attributes are

analyzed using the Chi-Square test, which is shown

in the equation:

 ()

 (1)

where χc
2
 is the Chi-square value, Oi is the Number of

observations in class i, and Ei is the number of

expected observations in class i if there is no

relationship between the feature and the target. Thus,

the Chi-square test works by finding the relationship

between the independent attribute (predictor values)

and the dependant attribute (target value). A higher

Chi-square score indicates a higher relationship

between the dependent and independent attribute,

meaning that a change in the predictor value will

influence a change in the target value. The results of

the chi-square analysis are shown in Figure 1,

through which it is evident that the attributes “Packet

Rate” and “Byte Rate” are the most important

features for determining whether a packet is normal

traffic or attacking traffic. The 3D visualization of the

modified dataset can be seen in Figure 2, where there

is a clear distinction between normal packets and

attacking packets. The two parameters chosen from

the dataset are PACKET_RATE and BYTE_RATE.

It is observed that as the value of these two

parameters increases, so does the probability that the

packet is of attacking traffic. The Chi-square values

of the top five parameters are given below in Table 3.

Table 3 Top 5 Chi-square values of parameters

Parameter Chi-Square value

PACKET_RATE 0.20814693

BYTE_RATE 0.15693363

FLAGS 0.08422273

PKT_SEND_TIME 0.05499739

4.3Training model
A comparison of various Machine learning models is

performed to determine a model that would give the

most accurate results while taking the least amount of

time to train. The different models which have been

experimented with are CatBoost Classifier, XGBoost

classifier, logistic regression, Naive Bayes classifier,

Decision Tree classifier, and KNN classifier.

Figure 1 Chi-Square test results

Sanjeetha R et al.

454

Figure 2 3D visualization of dataset

Both the Boosting algorithms have been trained on

100 epochs. The performance of each of the models

is measured using different metrics such as accuracy,

precision, recall. Training time has also been used as

a metric for analysis as DDoS attacks need to be

identified as fast as possible to prevent loss to the

organization. The Matplotlib library of python is used

to visualize the results for better understanding. The

Loss vs Epoch during the training of the CatBoost

classifier is shown in Figure 3 and Loss vs Epoch

during cross-validation is shown in Figure 4. It can

be seen that the model reaches the local minima 10

epochs into training whereas it takes 90 epochs

during cross-validation.

Figure 3 Training loss vs epoch graph

International Journal of Advanced Technology and Engineering Exploration, Vol 8(76)

455

Figure 4 Cross-Validation loss vs epoch graph

4.4Setting up SDN environment

Mininet is used to simulate the SDN environment

where DDoS attack, its detection, and mitigation are

tested. A topology is designed as shown in Figure 5.

The SDN network designed for this experiment is a

standard TreeNet topology available in Mininet. This

topology has two parameters depth and fanout which

have been set to 3 and 2 respectively. The depth

indicates the number of levels of switches that will be

present in the topology and the fanout is the number

of child nodes each parent node would have. The first

three layers consist of a total of 7 switches and the

last layer consists of 8 hosts, each switch in the

penultimate layer having 2 hosts each. A single Ryu

controller is connected to the root switch. In the

experiment, the host h1 (IP 10.0.0.1) will act as the

botmaster, host h3(IP 10.0.0.3) will act as the victim

host, and hosts h7 (10.0.0.7) and h8 (10.0.0.8) act as

the botnet. For a controller in the SDN network, RYU

is used which is a python-based controller. RYU's

northbound APIs which are in the form of rest APIs

provide flow information between DataPath and

enable deployment or modification of flow rules in

the SDN network. The packet rate and byte rate after

being retrieved from the APIs is given as input to the

machine learning model which classifies the flow as

normal traffic or DDoS attack. Figure 6 shows the

block diagram of the proposed solution.

Figure 5 SDN topology

Sanjeetha R et al.

456

Figure 6 Block diagram of the proposed Solution

4.5Connection setup and traffic generation

The botmaster executed a script that took control

over the botnets using an SSH connection. The

command-line tool hping3 is used to generate both

normal and DDoS UDP traffic. Normal traffic in this

experiment is the traffic generated to represent the

traffic generated by a non-malicious user on the

network. First, normal traffic is generated and then

the victim is bombarded with UDP flood traffic by

the two SSH botnets. A DDoS attack is simulated and

the change in flow rate is observed and analyzed

through Wireshark.

4.6Detection and mitigation

For detection and mitigation of attack, an SDN

application running over the controller is written in

python which will communicate with the controller

and retrieve required flow stats i.e., packet rate and

byte rate along with the source and destination mac

addresses of the flow at the desired interface. The

retrieved data is fed to the model as input in a

continuous manner to detect the attack. After an

attack is detected by the ML model, the already

fetched source and destination mac addresses

between which the DDoS traffic was observed, are

used as the match parameters to deploy the flow rules

onto the switch using the RYU Northbound APIs,

thus preventing further communication between the

hosts.

5.Results
The DDoS attack in Mininet is simulated. Normal

traffic is simulated until the 75th second after which

the DDoS attack starts. The sudden change in the

packet rate signifies the start of the DDoS attack by

the botnet. The packets/sec vs time is plotted for the

whole duration of the experiment and is shown in

Figure 7.

The detector-mitigator module is now added and the

same experiment is simulated in the same conditions.

This time too, normal traffic is generated until the

75th second and then the DDoS attack starts. The

detector-mitigator module can detect the DDoS

attack and can deploy the necessary flow rules to

mitigate the attack. The sudden decrease in packet

rate signifies the mitigation of the DDoS attack due

to the deployment of the flow rules. The packets/sec

vs time is plotted for the whole duration of the

experiment and is shown in Figure 8.

When the DDoS attack is initiated, the detector-

mitigator SDN application running on top of the

controller retrieves the packet rate and byte rate from

the Ryu Northbound APIs and passes them as input

to the machine learning model in the SDN

application for detection of DDoS attack. When the

attack is detected, the mitigator part deploys flow

rules to disable the connection between the botnet

and the victim through the Ryu Northbound APIs.

The sudden decrease in packet rate observed in the

graph is due to the blocking of connection between

victim and botnet after detection. Two peaks are

observed as there are 2 hosts in the botnet and there is

a minute time gap during the detection and mitigation

of the attack between the 2 hosts in the botnet

International Journal of Advanced Technology and Engineering Exploration, Vol 8(76)

457

The detector-mitigator SDN application running on

the controller takes in packet rate and byte rate as

input and passes them as input to the machine

learning model. If a DDoS attack is detected then the

following message is printed as shown in Figure 9.

Once a DDoS attack is detected, flow rules are

deployed by the SDN application to the required

switches using the RYU Northbound APIs. The last

two rules in Figure 10 are the rules deployed to

mitigate the attacks.

Once the flow rules are deployed the communication

between the bots in the botnet and the victim host is

completely blocked. It is evident when the 'pinball

command is used. All the connections exist except

the connection between the botnet and the victim

host. This is shown in Figure 11.

Six Machine Learning models were tested based on

the literature survey done namely the Catboost

model, XGBoost model [2,19], K-Nearest Neighbour

Model [9], Logistic Regression Model [10], Decision

Tree model [12,14], and Gaussian Naive Bayes

Model [14].

It is seen in Figure 12 that Catboost, XGBoost, and

K-Nearest Neighbours all gave the highest accuracy

of 98% followed by Gaussian Naive Bayes with an

accuracy of 97%, followed by Decision Trees and

Logistic Regression which gave the lowest accuracy

of 89%.

Figure 7 Packets/sec vs time graph at the victim host interface

Figure 8 Packets/sec vs time graph at victim host interface after deploying the SDN application

Figure 9 Output of the detector-mitigator SDN application written in python

Sanjeetha R et al.

458

Figure 10 Flow rules added at the necessary switch

Figure 11 Result of pingall command

Figure 12 Accuracy of the models tested

The training time for all the six models is also

observed and it is seen in Figure 13 that XGBoost

had the highest training time which is undesirable,

followed by K-Nearest Neighbour, followed by

Catboost and Logistic Regression which roughly had

the same time, followed by Decision Tree and finally

Gaussian Naive Bayes which had the least training

time. On account of both accuracy and training time,

it is evident that Catboost is the best model to choose

from the current set due to its very high accuracy and

low training time when compared to other models

with similar high accuracies. The values of Accuracy

and Training time for all of the models is given in

Table 4. It is seen in Table 4 that the highest accuracy

of 98.62% is obtained by using the CatBoost

classifier, as well as other classifiers such as

XGBoost and KNN. However, among the models

with the highest accuracy, it is observed that the

CatBoost classifier has the least training time of 119

seconds, followed by 149 seconds for the KNN

classifier. XGBoost has the highest training time of

658.5 seconds, which is almost 5.5 times the training

time of CatBoost. The table also provides other

measures of performance such as precision, recall,

and F1-score. It is observed that CatBoost, XGBoost,

and KNN have the best values of precision and F1-

score. XGBoost has a better Recall score than the

other two models by 0.01.

International Journal of Advanced Technology and Engineering Exploration, Vol 8(76)

459

Figure 13 Training time of the model tested

Table 4 Quantitative comparison of Accuracy and Training time of all the models experimented

ML Model Accuracy Precision Recall F1 - Score Training Time

(seconds)

CatBoost 0.9862 0.97 0.82 0.86 119

XGBoost [2,19] 0.9862 0.97 0.83 0.86 658.571

Decision Tree

[12,14]

0.8980 0.29 0.26 0.27

 2.293

K Nearest

Neighbours

(KNN) [9]

0.9862 0.97 0.82 0.86

 149.159

Logistic regression

[10]

0.8980 0.29 0.26 0.27

 111.693

Gaussian Naive

Bayes [14]

0.9757 0.46 0.50

 0.47 0.273

6.Discussion
Catboost algorithm, launched in 2017 is a relatively

new algorithm that provides various features like fast

prediction, improved accuracy, a requirement of

minimal hyperparameter tuning, etc. when compared

to its counterpart. The lack of its usage in the

networking domain prompted the team to test this

algorithm out in detecting DDoS attacks in an SDN

environment. From the results, it is evident that while

the accuracy of the Catboost algorithm is similar to

KNN and XGBoost, the training time is less when

compared to KNN and XGBoost. There are certain

limitations to the approach and the experimentation

performed. The first being that two parameters packet

rate and byte rate are considered for analysis. There

could be more parameters that might affect the

accuracy but due to limitations of the API used,

parameters that can provide optimal results among all

available parameters are considered. Another

limitation can be the cases of false positives where

some genuine host with a large number of requests

might be considered to be an attacker and blocked

from further communication. The experiment was

carried out on RYU controller as it provides

northbound APIs which delivered the parameters

required for the analysis. Hence, some other

controller might not be able to fulfill the objective of

the experiment. Also, the analysis was only

performed on UDP packets hence it can be further

improved by testing more types of network packets.

7.Conclusion and future scope
In this experiment, a DDoS attack is simulated in an

SDN environment using an SSH botnet. To detect

and mitigate such an attack, an SDN application that

runs on the controller is written in python to detect

the attack using a machine learning model and

mitigate the attack using flow rules. For the detection

part, six models are used namely Catboost, XGBoost,

Logistic Regression, Gaussian Naive Bayes, and

Sanjeetha R et al.

460

Decision Tree. it is observed that the Catboost model,

despite having the same accuracy as the XGBoost

model and K-Nearest Neighbour model, is chosen as

the better model when compared to the rest on

account of its training time. The future scope of this

research includes,

1. Testing the detector-mitigator module for other

types of attacks such as HyperText Transfer

Protocol flood attack, Ping flood attacks, etc.

2. Increasing the number of attributes used for

prediction by the detector module to increase the

accuracy.

3. Detection of the botmaster and limiting its

activities in the network

Acknowledgment
None.

Conflicts of interest
The authors have no conflicts of interest to declare.

References
[1] Chen Z, Jiang F, Cheng Y, Gu X, Liu W, Peng J.

XGBoost classifier for DDoS attack detection and

analysis in SDN-based cloud. In international

conference on big data and smart computing

(bigcomp) 2018 (pp. 251-6). IEEE.

[2] Thomas RM, James D. DDOS detection and denial

using third party application in SDN. In international

conference on energy, communication, data analytics

and soft computing 2017 (pp. 3892-7). IEEE.

[3] Lukaseder T, Stölzle K, Kleber S, Erb B, Kargl F. An

SDN-based approach for defending against reflective

ddos attacks. In conference on local computer

networks 2018 (pp. 299-302). IEEE.

[4] Hong K, Kim Y, Choi H, Park J. SDN-assisted slow

HTTP DDoS attack defense method. IEEE

Communications Letters. 2017; 22(4):688-91.

[5] Deepa V, Sudar KM, Deepalakshmi P. Detection of

DDoS attack on SDN control plane using hybrid

machine learning techniques. In international

conference on smart systems and inventive technology

2018 (pp. 299-303). IEEE.

[6] Lawal BH, Nuray AT. Real-time detection and

mitigation of distributed denial of service (DDoS)

attacks in software defined networking (SDN). In

signal processing and communications applications

conference 2018 (pp. 1-4). IEEE.

[7] Wijesinghe U, Tupakula U, Varadharajan V. Botnet

detection using software defined networking. In

international conference on telecommunications 2015

(pp. 219-24). IEEE.

[8] Dao NN, Park J, Park M, Cho S. A feasible method to

combat against DDoS attack in SDN network. In

international conference on information networking

2015 (pp. 309-11). IEEE.

[9] Dong S, Sarem M. DDoS attack detection method

based on improved KNN with the degree of DDoS

attack in software-defined networks. IEEE Access.

2019; 8:5039-48.

[10] Yadav S, Selvakumar S. Detection of application layer

DDoS attack by modeling user behavior using logistic

regression. In international conference on reliability,

infocom technologies and optimization (Trends and

Future Directions) 2015 (pp. 1-6). IEEE.

[11] Fouladi RF, Kayatas CE, Anarim E. Frequency based

DDoS attack detection approach using naive Bayes

classification. In international conference on

telecommunications and signal processing 2016 (pp.

104-7). IEEE.

[12] Lakshminarasimman S, Ruswin S, Sundarakantham K.

Detecting DDoS attacks using decision tree algorithm.

In fourth international conference on signal

processing, communication and networking 2017 (pp.

1-6). IEEE.

[13] Sahoo KS, Tripathy BK, Naik K, Ramasubbareddy S,

Balusamy B, Khari M, et al. An evolutionary SVM

model for DDOS attack detection in software defined

networks. IEEE Access. 2020;8: 132502-13.

[14] Pérez-Díaz JA, Valdovinos IA, Choo KK, Zhu D. A

flexible SDN-based architecture for identifying and

mitigating low-rate DDoS attacks using machine

learning. IEEE Access. 2020; 8:155859-72.

[15] Abou El Houda Z, Khoukhi L, Hafid AS. Bringing

intelligence to software defined networks: mitigating

DDoS Attacks. IEEE Transactions on Network and

Service Management. 2020; 17(4):2523-35.

[16] Gong C, Yu D, Zhao L, Li X, Li X. An intelligent

trust model for hybrid DDoS detection in software

defined networks. Concurrency and Computation:

Practice and Experience. 2020; 32(16):e5264.

[17] Phan TV, Park M. Efficient distributed denial-of-

service attack defense in SDN-based cloud. IEEE

Access. 2019; 7:18701-14.

[18] Tan L, Pan Y, Wu J, Zhou J, Jiang H, Deng Y. A new

framework for DDoS attack detection and defense in

SDN environment. IEEE Access. 2020; 8:161908-19.

[19] Alamri HA, Thayananthan V. Bandwidth control

mechanism and extreme gradient boosting algorithm

for protecting software-defined networks against

DDoS attacks. IEEE Access. 2020; 8:194269-88.

[20] Wang J, Wen R, Li J, Yan F, Zhao B, Yu F. Detecting

and mitigating target link-flooding attacks using SDN.

IEEE Transactions on Dependable and Secure

Computing. 2018; 16(6):944-56.

[21] Jia Y, Zhong F, Alrawais A, Gong B, Cheng X.

Flowguard: an intelligent edge defense mechanism

against IoT DDoS attacks. IEEE Internet of Things

Journal. 2020; 7(10):9552-62.

International Journal of Advanced Technology and Engineering Exploration, Vol 8(76)

461

Sanjeetha R, is a Research Scholar and

Assistant Professor is working in the

Department of Computer Science and

Engineering at M S Ramaiah Institute

of Technology. She is a senior IEEE

member and life member of ISTE. Her

area of interests includes Software

Defined Networks, Computer Networks

and Data Communications

Email: sanjeetha.r@msrit.edu

Anant Raj, is currently pursuing his

Bachelor‟s degree in Computer Science

and Engineering in MS Ramaiah

Institute of Technology, Bangalore and

will graduate in 2021. He is also

working as an intern in JP Morgan

Chase & Co. His fields of interest are

Machine Learning, Software Defined

Networks and Web & App Development.

Email: anant.rj.421@gmail.com

Kolli Saivenu, is pursuing his

Bachelors of Engineering in Computer

Science and Engineering from MS

Ramaiah Institute of Technology and

will graduate in the year 2021. His

fields of interest are Machine Learning,

Deep Learning and Software Defined

Networks.

Email: ksaivenu2010@gmail.com

Mumtaz Irteqa Ahmed, is pursuing

his Bachelors of Engineering in

Computer Science and Engineering

from MS Ramaiah Institute of

Technology and will graduate in the

year 2021. His areas of interests include

Software Development, Machine

Learning and Network Security.

Email: fareed2000ahmed@gmail.com

Sathvik B, is pursuing his Bachelor‟s

degree in Computer Science and

Engineering in MS Ramaiah Institute of

Technology, Bangalore, graduating in

2021. He is a member of IEEE and is

working as an Intern in JP Morgan

Chase & Co. His are of interest include

Machine Learning and Software

Defined Networks.

Email: sathvikbk123@gmail.com

Dr. Anita Kanavalli received her

Ph.D. in Computer Science and

Engineering from Bangalore University

in 2013. She is a member of Indian

Society of Technical Education (ISTE)

and IEEE. She is also a certified

instructor for CISCO Networking

Academy for CCNA.

Email: anithak@msrit.edu

about:blank
about:blank
about:blank
about:blank

