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1.Introduction 
Internet-based communication has become an 

important part of our daily lives [1]. It expands its 

usefulness into businesses and commercials such as 

banking transactions, patients monitoring, and 

military operations. Data security is at the heart of 

this commission that supports secure and safe 

passage of data traversal. Particularly, the storing and 

transmitting of data has been blessed with the 

emergence of technology known as encryption or 

cryptography [2−4] that offers an acceptable level of 

security.As the sophistication of attacks increase, 

researches towards improving existing algorithms, or 

even constructing a new breed of algorithms further 

takes place to produce more robust algorithms that 

can withstand all known attacks [5−11]. On what 

concern us, we proposed in this paper is a diffusion 

method inspired by the Hungarian cube. 

 

 

 
*Author for correspondence 

The idea is to take the movements of the cube in a 

projection in a plane, and the plane is the only one 

representing an image. 

 

The diffusion method is responsible for ‘diffusing’ 

each plaintext symbol over the entire ciphertext. A 

slight modification in the plaintext must result in a 

significant modification in the ciphertext. This 

principle is often realized by the permutation function 

aims to conceal the redundancy by distributing the 

influence of a bit of key on all the cipher. The Six-

back transposition that we have proposed is a 

permutation function, it realizes the diffusion of all 

the pixels in such a way that the image is  suitably 

scrambled. 

 

2.Literature review 
2.1Rubik’s cube diffusion 

The Rubik's Cube (Figure 1) is a puzzler invented by 

Ernő Rubik in 1974, spread rapidly throughout the 

world in the 1980s. 

 

Research Article 

Abstract  
A transposition cipher is a method of encryption by which the positions held by units of plaintext are shifted according to 

a regular function so that the ciphertext constitutes a permutation of the plaintext. That is, the order of the units is 

changed (the plaintext is reordered). Mathematically a bijective function is used on the characters' positions to encrypt 

and an inverse function to decrypt. Knowing that the vertical and horizontal rings of the Hungarian cube can move left 
and skilfully in a circular manner, as well as any face of the cube. We have been inspired by this Hungarian cube 

(Rubik's cube) to realize our image encryption system that is a kind of diffusion cipher or a cipher transposition. We have 

baptized it: Six-Dos Transposition. The implementation is simple and we have improved the security of the encryption 

system by eliminating the linearity effect of the coefficient of the adjacent pixels. The length of the encryption key of the 

cryptosystem that uses Six-Dos Transposition is increased by 63 bits for proposal 1 which is a single Six-Dos transposition 
to encrypt the main image and, it increased by 129 bits for proposal 3 which uses two Six-Dos transpositions to encrypt 

the main image. We encrypt each sub-image with the same Six-Dos transposition, and at the end, we encrypt the main 

image with a special Six-Dos transposition. 
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Figure 1 Cube de rubik 

 

We have been inspired by this Rubik's cube [12] to 

realize transposition encryption. As seen in the 

following figure, the vertical and horizontal rings can 

move left and skilfully circular, as well as any face of 

the cube. 

 

3.Methodology 
The idea of Six-Dos Transposition Cipher is to take 

the movements of the cube in a projection in a plane, 

and the plane is the only one representing an image. 

 

 A shift of alternate lines: a left shift of b positions 

for odd lines and a right shift of d positions for 

even lines, Figure 2a. 

 

 
Figure 2(a) Shifting alternate lines  

 

 A shift of the alternating columns: a displacement 

at the top of a position for the odd columns and a 

displacement at the bottom of c positions for the 

even columns, Figure 2b. 

 

 
Figure 2(b) Shifting alternate columns 

 

 A rotation of the image on itself, otherwise the 

rows of the matrix become columns, and vice 

versa, Figure 2c. 

 

 
Figure 2(c) Rotation of the image on itself 

 

In the rotation of the image on itself as shown in 

Figure 2d, we consider only these four cases 

(positions). Which can be coded as follows: 

 (normal image, was shifted with a rotation of 0° is 

encoded by rot = 00,  

 the image shifted with a rotation of 90° is coded by 

rot = 01,  

 the image shifted with a rotation of 180° is coded 

by rot = 11,  

 and an image shifted with a rotation of 270° is 

coded by rot = 10. 

 

 

 
Figure 2(d) Rotation of the cameraman on itself 
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 We have multiplied a, b, c d, by w, as an 

accelerator to amplify the interference see 

equations (equation 7), (equation 8), (equation 9), 

and (equation10). 

 

3.1Operating principle 

We realized the diffusion of our crypto-system in 

four steps as follows Figure 2e: 

1. A rotation of the image on itself 

2. Shifting Alternate Lines 

3. Shifting Alternate Columns 

4. The inverse of the rotation 

 

Or (it depends on the encryption key), 

1. A rotation of the image on itself 

2. Shifting Alternate Columns 

3. Shifting Alternate Lines 

4. The inverse of the rotation 

 

Rot 00 01 11 10 

Inv-Rot 00 10 11 01 

 

We note to calculate the inverse of the rotation, you 

just need to invert the positions of the bits of the 

rotation. 

 

 

 
 Figure 2(e) Block diagram of our approach 

 

3.2Evaluating a cryptosystem 

The proposed cryptosystem will be verified for some 

properties for validation purposes. We take into two 

abbreviations CCPI and CCEI representing the 

Coefficient of correlation of the original image and 

the Coefficient of correlation of the encrypted image. 

 

We apply the value (a, b, c, d) = (224, 232, 86, 168) 

for the images of Lena and Cameraman as in Figure 

3a, to be encrypted into Figure 3b. As for the 

correlation of the adjacent pixels [13, 14], from the 

perspective of probability and statistics, the 
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correlation between two random variables represents 

the strength of the bond that exists between them. 

The searched link is an affine relationship, and it is 

the linear regression. Consider calculating the 

correlation coefficient between two sets: X (x1, …, 

xn) and Y (y1, …, yn) having the same length. The 

correlation measurement can be acquired by 

calculating the linear correlation coefficient of 

Bravais-Pearson [15] such as the following: 

 

𝐶𝑜𝑒𝑓(𝑋 , 𝑌) =
𝐶𝑜𝑣(𝑋,𝑌)

√𝐷(𝑋)√𝐷(𝑌)
              (1) 

Covariance between x and y is given as follows: 

𝐶𝑜𝑣(𝑋, 𝑌) =
1

𝑁
∑ ((𝑋𝑖 − 𝐸(𝑋) ) ∗𝑁

𝑖=1
(𝑌𝑖 − 𝐸(𝑌) ))   

(2) 

The average of X is: 

𝐸(𝑋) = 
1

𝑁
∑ 𝑋𝑖

𝑁
𝑖=1                                       (3) 

The average of Y is:  

𝐸(𝑌) =  
1

𝑁
∑ 𝑌𝑖

𝑁
𝑖=1                                         (4) 

The standard deviation of X is: 

𝐷(𝑋) =  
1

𝑁
∑ (𝑋𝑖 − 𝐸(𝑋))2𝑁

𝑖=1                        (5) 

The standard deviation of Y is: 

𝐷(𝑌) =  
1

𝑁
∑ (𝑌𝑖 − 𝐸(𝑌))2𝑁

𝑖=1                        (6) 

 

 
Figure 3(a) Original image of Lena and cameraman 

 

 
Figure 3(b) Encrypted image of Lena and 

cameraman 
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Figure 4(a) Spatial representation of horizontally 

adjacent pixels: Lena image (left) and encrypted 

image (right) 
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Figure 4(b) Spatial representation of horizontally 

adjacent pixels: cameraman image (left) and her the 

encrypted image 

 

The correlation coefficient is bounded by -1 and 1. 

The degree of linear dependence between the two 

variables can be obtained from the given intermediate 

values. The closer the coefficient to the boundary (-1 

and 1), the correlation between variables is said to be 

strong, denoted as highly correlated. A correlation 

equals 0 shows the variables are uncorrelated. To test 

the correlation coefficient, we selected 2000 pairs of 

two adjacent pixels (x, y), from both encrypted and 

original images.  

 

These two Figures 4a and 4b show the correlation 

factor between two horizontally adjacent pixels from 

original and encrypted images. It is observable that 

the neighbouring pixels from Lena image (diffusion 

with the values (a, b, c, d) = (224, 232, 86, 168) 

experience a high correlation (coefficient = 0.9843), 

whereas it encrypted counterpart has low correlation 

(coefficient = 0.1111). Similarly, the Cameraman 

image (diffusion with the values (a, b, c, d) = (224, 

232, 86, 168) experience a strong correlation 

(coefficient = 0.9840), while in the encrypted version 

has low correlation (coefficient = 0.0027).  
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Encrypted images that come with a low correlation 

between two neighboring pixels are known to be 

difficult to be cryptanalysis. Moreover, from the 

original image, we can have several lines to fit this 

cloud of points but one that possesses  a remarkable 

property of a line representable by Y = aX + b (a 

linear correlation). 

 

4.Result and discussion 

Consider the original image and encrypted image of 

Lena and the Cameraman. Consider our image as a 

matrix. A special permutation is performed in three 

steps concerning the columns and concerning the 

rows of the matrix as follows: 

a. Compared to the columns: For odd columns, move 

to the right of (a) positions: + a. For even columns, 

move to the left of (c) positions: -c 

b. Compared to the Lines: For odd lines, move to the 

right of (b) positions: + b. For even paired lines, 

move to the left of (d) positions:-d. 

c. Compared to the rotation of the image on itself: 

rot=00, rot=01, rot=10, rot=11. 

 

Let the data be (a, b, c, d) = (713, 482, 129, 503). 

One takes rot = 00.  
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Figure 5(a) Cipher image of "cameraman" and its 

Spatial Representation of Horizontally Adjacent 

Pixels 
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Figure 5(b) Cipher image of "Lena" and its Spatial 

Representation of Horizontally Adjacent Pixels  

Based on Figures 5a and 5b, we see from Table 1 

that, the correlation between neighboring pixels in 

the plaintext and encrypted images are respectively 

0.9840 and 0.5129 for the cameraman, and 0.9843 

and 0.2294 for Lena. The fact is, the low correlation 

in the encrypted image hardened the attack against 

the proposed cryptosystem. 

 

Table 1 Encryption With (a, b, c, d) = (713, 482, 129, 

503) 
Image CCPI CCEI 

Cameraman 0.9840 0.5129 

Lena 0.9843 0.2294 

 

4.1Acceleration factor 

The diffusion is accelerated with the use of an 

accelerator factor w. This number w will multiply by 

all the values a, b, c, and d. In other words, we use 

the values a*, b*, c*, and d* as encryption values:  

 

𝑎∗ = 𝑎 ∗ 𝑤 𝑚𝑜𝑑(256 )                       (7) 

𝑏∗ = 𝑏 ∗ 𝑤 𝑚𝑜𝑑(256)                       (8) 

𝑐∗ = 𝑐 ∗ 𝑤 𝑚𝑜𝑑 (256)                        (9) 

𝑑 ∗ = 𝑑 ∗ 𝑤 𝑚𝑜𝑑 (256)                      (10) 

 

We will see the influence of the accelerator factor on 

encryption.  

 

Let have another example, the following values (a, b, 

c, d) = (123, 131, 57, 92).  For different values of w, 

we have the following Figures  6(a) to 6(m) represent 

two images: encryption image (left) and spatial 

representation of horizontally adjacent pixels (right), 

the correlation coefficient between horizontally 

adjacent pixels is given, and in several cases does not 

reflate the well-known coefficient of Bravais-Pearson 

in linear dependence. 
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Figure 6(a) Cipher image of "Cameraman" and its 

spatial representation of horizontally adjacent pixels, 

W=1, CCEI= 0.5173 

 



International Journal of Advanced Technology and Engineering Exploration, Vol 8(75)                                                                                                             

263          

 

 P
ix

el
 v

al
u
e 

o
n
 l
o
ca

ti
o
n
 (

x
+

1
, 
y
) 

 
 Pixel value on location (x, y) 

Figure 6(b) Cipher image of "Cameraman" and its 

spatial representation of horizontally adjacent pixels, 

W=4, CCEI= 0.0062 
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Figure 6 (c) Cipher image of "Cameraman" and its 

spatial representation of horizontally adjacent pixels , 

W=13, CCEI= 0.1666 
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Figure 6(d) Cipher image of "Cameraman" and its 

spatial representation of horizontally adjacent pixels , 

W=27, CCEI= 0.0277 
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Figure 6(e) Cipher image of "Cameraman" and its 

spatial representation of horizontally adjacent pixels , 

W=31, CCEI= 0.9068 
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Figure 6(f) Cipher image of "Cameraman" and its 

spatial representation of horizontally adjacent pixels , 

W=71, CCEI= 0.4968 
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Figure 6(g) Cipher image of "Cameraman" and its 

spatial representation of horizontally adjacent pixels , 

W=93, CCEI= 0.8526 
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Figure 6(h) Cipher image of "Cameraman" and 

spatial representation of horizontally adjacent pixels , 

W=96, CCEI= 0.0042 
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Figure 6(i) Cipher image of "Cameraman" and its 

spatial representation of horizontally adjacent pixels , 

W=127, CCEI= 0.1423 
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Figure 6(j) Cipher image of "Cameraman" and its 

spatial representation of horizontally adjacent pixels , 

W=155, CCEI= 0.8353 
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Figure 6(k) Cipher image of "Cameraman" and its 

spatial representation of horizontally adjacent pixels , 

W=160, CCEI= 0.0053 
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Figure 6(l) Cipher image of "Cameraman" and its 

spatial representation of horizontally adjacent pixels , 

W=163, CCEI= 0.8522 
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Figure 6(m) Cipher image of "Cameraman" and its 

spatial representation of horizontally adjacent pixels , 

W=231, CCEI= 0.3497 

 

 

 

 

 



International Journal of Advanced Technology and Engineering Exploration, Vol 8(75)                                                                                                             

265          

 

Table 2 shows as the influence of the accelerator 

factor in the correlation coefficient between 

horizontally adjacent pixels of cameraman image for 

the values (a, b, c, d) = (123, 131, 57, 92), but in 

several cases, does not reflate the well-known 

coefficient of Bravais-Pearson in linear dependence. 

 

 

Table 2 Correlation coefficient between horizontally adjacent pixels for different values of w for encrypted 

cameraman image with (a, b, c, d) = (123, 131, 57, 92) 
W CCEI W CCEI 

0 0.9840 … … 

1 0.5713 96 0.0042 

2 0.0964 112 0.0161 

4 0.0062 184 0.0666 

12 -0.0517 228 0.0107 

58 0.0167 252 0.0061 

 

The curve of Figure 7 represents the 256 values of 

the accelerator factor w (wi = i, such as i = 0 to 255) 

for the encryption of the image of the cameraman. 

 

The Figures in Figure 8(a) to 8(g) represent two 

images: encryption image (left) and spatial 

representation of horizontally adjacent pixels (right), 

the correlation coefficient between horizontally 

adjacent pixels is given, and in several cases does not 

reflate the well-known coefficient of Bravais-Pearson 

in linear dependence. 
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Figure 7 The correlation coefficient between horizontally adjacent pixels for different values of w for encrypted cameraman 

image with (a, b, c, d) = (123, 131, 57, 92) 
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Figure 8(a) Cipher image of "Lena" and its spatial 

representation of horizontally adjacent pixels, W=1, 

CCEI= 0.2234 
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Figure 8(b) Cipher image of "Lena" and its spatial 

representation of horizontally adjacent pixels, W=31, 

CCEI= 0.8906 
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Figure 8(c) Cipher image of "Llena" and spatial 

representation of horizontally adjacent pixels, W=74, 

CCEI= 0.0044 
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Figure 8(d) Cipher image of "Lena" and its Spatial 

representation of horizontally adjacent pixels, W=93, 

CCEI= 0.8159 
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Figure 8(e) Cipher image of "Lena" and its Spatial 

representation of horizontally adjacent pixels, 

W=163, CCEI= 0.8142 
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Figure 8(f)Cipher image of "Lena" and its Spatial 

Representation of Horizontally Adjacent Pixels, 

W=182, CCEI= 0.0018 

 

   
  
P

ix
el

 v
al

u
e 

o
n
 l
o
ca

ti
o
n
 (

x
+

1
, 
y
) 

 
 Pixel value on location (x, 

y) 

Figure 8(g) Cipher image of "Lena" and its Spatial 

representation of horizontally adjacent pixels , 

W=225, CCEI= 0.8948 

 

Table 3 shows the influence of the accelerator factor 

in the correlation coefficient between horizontally 

adjacent pixels of cameraman image for the values (a, 

b, c, d) = (123, 131, 57, 92), but in several cases, does 

not reflate the well-known coefficient of Bravais-

Pearson in linear dependence. Let have the following 

values (a, b, c, d) = (713, 482, 129, 503).  For 

different values of w, we have: 

 

The curve of Figure 9 represents the 256 values of 

the accelerator factor w (wi = i, such as i = 0 to 255) 

for the encryption of the image of Cameraman. 

 

The Figures 10(a) to 10(f) represent two images: 

encryption image (left) and spatial representation of 

horizontally adjacent pixels (right), the correlation 

coefficient between horizontally adjacent pixels is 

given, and in several cases does not reflate the well-

known coefficient of Bravais-Pearson in linear 

dependence. 
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Table 3 Correlation coefficient between horizontally adjacent pixels for different values of w for encrypted lena 

image with (a, b, c, d) = (123, 131, 57, 92) 
W CCEI W CCEI 

0 0.9843 … … 

1 0.2234 165 0.0468 

4 0.1306 175 0.0162 

20 0.0334 182 -0.0018 

74 -0.0044 246 0.0800 

97 0.0753 251 0.1900 
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Figure 9 The correlation coefficient between horizontally adjacent pixels for different values of w for encrypted 

Lena image with (a, b, c, d) = (123, 131, 57, 92) 
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Figure 10(a) Cipher image of "Lena" and its spatial 

representation of horizontally adjacent pixels , W=1, 

CCEI= 0.2294 
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Figure 10(b) Cipher image of "Lena" and its spatial 

representation of horizontally adjacent pixels , W=2, 

CCEI= 0.1429 
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Figure 10 (c) Cipher image of "lena" and its spatial 

representation of horizontally adjacent pixels , W=3, 

CCEI= 0.0722 
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Figure 10 (d) Cipher image of "Lena" and its spatial 

representation of horizontally adjacent pixels , W=5, 

CCEI= 0.1736 
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Figure 10(e) Cipher image of "Lena" and its spatial 

representation of horizontally adjacent pixels , W=7, 

CCEI= 0.2998 
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Figure 10(f) Cipher image of "Cameraman" and its 

spatial representation of horizontally adjacent pixels , 

W=1, CCEI= 0.5129 

The curves of Figure 11 and Figure 12 represent the 

256 values of the accelerator factor w (wi = i, such as 

i = 0 to 255) respectively for the encryption of the 

images of Lena and the cameraman. 

 

Figure 11 for Lena image and Table 4 and Figure 12 

cameraman image, show the influence of the 

accelerator factor in the correlation coefficient 

between horizontally adjacent pixels for the values 

(a, b, c, d) = (713, 482, 129, 503), but in several 

cases, does not reflate the well-known coefficient of 

Bravais-Pearson in linear dependence. 

 

Figure 13 shows the influence of the accelerator 

factor in the correlation coefficient between 

horizontally adjacent pixels for the values (a, b, c, d) 

= (123, 131, 57, 92), between two encrypted images 

of Lena and Cameraman. 

 

Figure 14 shows the influence of the accelerator 

factor in the correlation coefficient between 

horizontally adjacent pixels for cipher image of 

"Lena for two different values the values: and of (a, 

b, c, d) = (123, 131, 57, 92) and of (a, b, c, d) = (713, 

482, 129, 503). 
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Figure 11 The correlation coefficient between horizontally adjacent pixels for different values of w for encrypted 

Lena image with (a, b, c, d) = (713, 482, 129, 503) 

 

Table 4 Correlation coefficient between horizontally adjacent pixels for different values of W for e ncrypted 

cameraman image with (a, b, c, d) = (713, 482, 129, 503) 
W CCEI W CCEI 

0 0.9840 … … 

1 0.5129 174 0.0083 

4 0.0307 200 0.0072 

22 0.0091 206 -0.0040 

30 -0.0014 256 0.9840 
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Figure 12 The correlation coefficient between horizontally adjacent pixels for different values of w for encrypted 

cameraman image with (a, b, c, d) = (713, 482, 129, 503) 
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Figure 13 The correlation coefficient between horizontally adjacent pixels for different values of w of cipher image 

of Lena and Cameraman with (a, b, c, d) = (123, 131, 57, 92) respectively 
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Figure 14 Correlation coefficient between horizontally adjacent pixels for different values of w for cipher image of 

Lena and cameraman with (a, b, c, d) = (123, 131, 57, 92) and (a, b, c, d) = (713, 482, 129, 503) 
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We have obtained that the coefficient of correlation is 

equal to 0.98 and hence the image is scrambled.  

We can note in several cases in our implementation, 

we have got undesirable linear correlation coefficient 

values: 

A correlation equal to “0”: Figures (Figure 6(d), 

Figure 6(c), Figure 6(f), Figure 10(e)). 

A correlation equal near to “1”: Figures (Figure 6g, 

Figure 6(j), Figure 6(l), Figure 6(b), Figure 6(d), 

Figure 6€, Figure 10(f)). 

Then, it is always possible to calculate a correlation 

coefficient [15], but such a coefficient does not 

always manage to account for the relationship that 

exists between the variables studied. Indeed, it 

assumes that we try to judge the existence of a linear 

relationship between our variables. It is therefore not 

suitable for judging correlations that are not linear. It 

also loses its interest when the studied data are very 

heterogeneous since it represents an average 

relationship and that we know that the average does 

not always have a meaning, especially if the data 

distribution is multi-modal. If the two variables are 

independent [15], then their correlation is 0. 

However, the converse is false because the 

correlation coefficient only indicates a linear 

dependence. Other phenomena, for example, can be 

correlated exponentially, or in the form of power (see 

two-variable statistical series in elementary 

mathematics). 

 

4.2Improvement of six-dos transposition 

We can use several Six-Dos transpositions or just 

only one. For example (Refer to Figures. 15(a) to 

15(c)): We have Proposal 1, which is a single Six-

Dos transposition to encrypt the image. 

 

P1) Do the Six-Dos transposition for all image, with 

the values (a, b, c, d, w) = (123, 131, 57, 92, 1). 

 

   
Figure 15(a) P1 for cameraman and Lena 

 

An obvious improvement of our Six-Dos 

transposition is to divide the main image into 4n sub-

images, for each sub-image, it has  28-n pixels in row 

and 28-n pixels in columns. 

 

For n = 1, we will have 4 sub-images, and each sub-

image contains only 16324 pixels, 128 pixels in a 

row, and 128 pixels in columns.  

For n = 2, will have 16 sub-images, and each sub-

image contains only 4096 pixels, 64 pixels in a row, 

and 64 pixels in columns. 

For n = 3, we will have 64 sub-images, and each sub-

image contains only 1024 pixels, thirty-two pixels in 

a row, and thirty-two pixels in columns.  

For n = 4, will have 256 sub-images, and each sub-

image contains only 256 pixels, sixteen pixels in row 

and sixteen pixels in columns. 

For n = 5, will have 1024 sub-images, and each sub-

image contains only 64 pixels, eight pixels in a row, 

and eight pixels in columns. 

For n = 6, will have 4096 sub-images, and each sub-

image contains only 16 pixels, four pixels in row and 

four in columns, this case is not interesting. 

 

Proposal 2: We can use (4n+1) times Six-Dos 

transpositions to encrypt the main image by steps. 

We encrypt each sub-image with a special Six-Dos 

transposition, and at the end, we encrypt the main 

image with a special Six-Dos transposition. 

Proposal 3: We can use two Six-Dos transpositions to 

encrypt the main image by steps. We encrypt each 

sub-image with the same Six-Dos transposition, and 

at the end, we encrypt the main image with a special 

Six-Dos transposition. 

 

For example, we divide the image into four sub-

images (4n, n=1), make the six-Dos transposition with 

the same data on the four sub-images separately, with 

the values (a, b, c, d, w) = (123, 131, 57, 92, 1). 

 

   
Figure 15(b) P2 for cameraman and Lena 

 

For another example, we divide the main image into 

sixteen sub-images, make the six-Dos transposition 

with the same data on the sixteen sub-images 
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separately and make the Six-Dos transposition for the 

resulting image. 

   
Figure 15(c) P3 for cameraman and Lena 

 

The encryption system with two times Six-Dos 

transpositions works well. 

 

4.3Key-space 

For this cryptosystem and the simple proposal 1 (P1), 

the secret key field is made up of 7 fields as follows, 

with the following parameters: 

 

Table 5a Encryption key field for proposal 1 

A B C D W R K 

 

1) Consider the values a, b, c, d of the order of 104 

(103210, and 1023, hence 104213), 4 * 13 = 52 

bits. 

2) Scalar W that varies between 1 and 256 8 bits. 

3) R: 2-bit rotation of the image on itself (00, 01, 10, 

11). 

4) K=C/L: Beginning by the Columns or beginning 

by the Lines. We adopt: if K=1, we beginning with 

the columns, if K=0, we beginning with the lines. 

 

We will have a key of (52 + 8 + 2 + 1 =) 63 bits. 

 

In this case, we have a key-space of around 263. The 

keys-pace is large enough to make a brute force 

attack impossible. 

 

For Proposal 2: If we use the division of the image 

to be encrypted in power (n) of 4, n = 1, 2, .., 6, we 

encrypt each sub-image with a special Six-Dos 

transposition, and at the end, we encrypt all the main 

image with a special Six-Dos transposition, then we 

can use the encryption key in order of ; (4n+1) 63 bits 

which is very huge, this proposal is not practical. 

 

 

Table 5b Encryption key field for proposal 2 
N Number of 

Sub-image 

Dimension of  

Sub-image 

Key in bits Key-space 

1 4 128*128 315 2315 

2 16 64*64 1071 21071 

3 64 32*32 4096 24095 

4 256 16*16 16191 216191 

5 1024 8*8 64575 264575 

6 4096 4*4 258111 2258111 

 

For Proposal 3: For this proposal, we use only two 

Six-Dos transpositions to encrypt the main image by 

steps. We encrypt each sub-image with the same Six-

Dos transposition, and at the end, we encrypt the 

main image with a special Six-Dos transposition. 

 

 

Table 5c Encryption key field for proposal 3 

A1 B1 C1 D1 W1 R1 K1 A2 B2 C2 D2 W2 R2 K2 N 

 

N can take the values 1, 2, 3, 4, 5, and 6, so it is 

coded on 3 bits. In this proposal, we have the 

encryption key in order of (2* 63 +3) bits= 129 bits. 

For this proposal, we have a key-space of around 

2129. The key-space is large enough to make a brute 

force attack impossible. The length of the key is 

greater than the well-known Advanced Encryption 

Standard (AES) published in 2001 uses key sizes of 

128 bits. 

 

 

 

5.Conclusion 

We have inspired by the Hungarian cube (Rubik's 

cube) to realize our image encryption system that is a 

kind of diffusion cipher or a cipher transposition. We 

have baptized it: Six-Dos Transposition. It works 

well and, it has broken the concept of linearity 

correlation between adjacent pixels. We can conclude 

that our new Six-Dos transposition is secret key 

encryption and, as 63 bits length key for proposal 1 

which is a single Six-Dos transposition to encrypt the 

main image, the key-space is of the order of 263, 

which is more than to the well-known Data 
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Encryption Standard (DES) algorithm 256. For this 

proposal three, we use only two Six-Dos 

transpositions to encrypt the main image. We encrypt 

each sub-image with the same Six-Dos transposition, 

and at the end, we encrypt all the main image with a 

special Six-Dos transposition, in this case, we have 

129 bits length key, the key-space is of the order of 

2129, which is more than to the Advanced Encryption 

Standard (AES) which is 2128. The length of the 

encryption key of the cryptosystem that uses Six-Dos 

Transposition is increased by 63 bits for proposal 1 

which is a single Six-Dos transposition to encrypt the 

main image and, it increased by 129 bits for proposal 

3 which uses two Six-Dos transpositions to encrypt 

the main image. We encrypt each sub-image with the 

same Six-Dos transposition, and at the end, we 

encrypt the main image with a special Six-Dos 

transposition. 
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