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1.Introduction 
The effect of internal heat generation has a 

significant role in various applications including fire 

and in the combustion studies as well as storage of 

the radioactive materials and many others. It is found 

that in many situations, the material tends to offer its 

own source of heat, leading to an alternate manner by 

which a convective flow can happen by means of the 

local heat generation within the layer. Such a 

scenario takes place through radioactive decay or the 

exothermic reaction as well as the nuclear reaction 

which can happen to occur within the material. Due 

to this internal heat generation, we can find the 

thermal gradient inside and outside of the earth's 

crust, which is soaked with multi-segment fluids, 

which enables the convective flow, and therefore 

transforming the thermal energy towards the earth's 

surface.   
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Hence, there is an immense significance of internal 

heat generation turns out to be very apparent in 

various applications that includes storage of 

radioactive materials, geophysics, reactor safety 

analysis. The movement of any fluid element can be 

distinguished by their unique features which are 

translation, rate of deformation and the rotation taking 

place in the space. When we consider the rotation of 

fluid with some velocity, we see that the pressure 

rapidly increases in such a way that the pressure is 

independent of the direction of the angular velocity 

generated by the rotating fluid. Yekasi et al. [1] 

studied the role of internal heat sources on Rayleigh-

Bénard  convection driven by suction-injection 

combination under 1g and  g situations  between an 

upper free and a lower rigid  boundary showing that 

internal heat source results in stabilization of the 

system upon infinitesimal disturbance on it.  

Haajizadeh et al. [2] made a study on the time 

independent natural convection that takes place within 

a rectangular porous media with a uniform internal 

heat as well as cooling from the side wall. The study 
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was made in two cases, low Rayleigh numbers and 

large Rayleigh numbers, it was found out that in the 

core region, the heat that is generated is carried 

upward by a vertical convection wherein the lateral 

conduction can be neglected whereas in the boundary 

layers the heat is removed by lateral cooling. The 

analytical study when the natural convection is taking 

place subjected to volumetrically internal heat 

generation with the effect of the magnetic field was 

studied by Benos and Sarris [3], wherein the method 

of asymptotic expansion has been used to obtain the 

analytical solution that is valid for the cavities with 

the comparatively larger ratio when considering 

significantly low Rayleigh numbers. Malashetty and 

Heera [4] made a study on the effect of rotation and 

anisotropy on the onset of a double diffusive 

convection in a porous layer and found that the 

existence of unstable motions in case of rotating 

porous medium does not depend on a specific range of 

Prandtl number as opposed to the case of viscous fluid 

flow. Riahi [5] studied the inertial and rotational 

effects on an oscillatory flow in a horizontal layer and 

the study showed that the Coriolis effect is able to 

enhance the physical domain for an oscillatory flow as 

opposed to the inertial force. Another study made by 

Deepika et al. [6] shows that there are potential 

regions of sub-critical instabilities for increasing 

values of internal heat source parameter Q in the 

problem of thermal convection in a horizontal fluid-

saturated porous layer where the flow is governed by 

the Brinkman extension of Darcy's law. The onset of 

convection with a parabolic basic temperature profile 

was first studied by Roberts [7] in the study of 

convection in a horizontal layer with internal heat 

generation. Bhadauria et al. [8] studied the effect of 

internal heating and time-periodic gravity modulation 

on Rayleigh-Bénard convection in a vertically 

oscillating micropolar fluid. It was found that in a 

convective system, the effect of internal Rayleigh 

number has a destabilizing effect. Riahi [9] studied 

the linear flow instability in oscillatory and stationary 

modes of disturbance in a horizontal porous layer at 

the time of alloy solidification and found that they are 

both stabilizing and destabilizing effects of the 

Coriolis force on the flow in a porous layer. When 

there is some kind of obstacle which has been 

uniformly heated in a Newtonian fluid that satisfies 

the Boussinesquian approximation, then the 

stagnation point flow of the fluid and the pattern of 

the micro-rotation becomes almost similar when 

compared to the stagnation point flow when 

orthogonal which was a study done by Borrelli et al.  

[10]. Combining the effects of rotation and with the 

internal heating in a fluid layer which is viscosity 

dependent was a study made by Bhadauria and Kiran 

[11], and the results shows internal heating 

destabilizes the system. Thermal convection taking 

place in a rotating anisotropy porous medium was a 

study carried out by Vanishree and Siddheshwar [12], 

by applying the linear stability analysis on the 

convection where temperature-dependent viscosity is 

considered. The oscillatory and stationary convection 

were both considered separately and the oscillatory 

convection seems highly improbable. The natural 

convection which is taking place in a rotating 

anisotropy porous medium with an internal heat 

generation was a study made by Bhadauria et al. [13], 

wherein the linear theory is performed using the 

normal mode analysis technique and the 

corresponding stability analysis derives the conditions 

for the stationary as well as convection which is 

oscillatory.  The effect of rotation in a horizontal 

anisotropic porous layer was also studied by 

Malashetty and Swamy [14], in which the linear 

theory is carried out by using the normal mode 

analysis method and the nonlinear theory is based on 

the truncated Fourier series analysis. The normal 

mode analysis technique shows that the linear theory 

provides the criteria for the onset of stationary as well 

as the oscillatory convection.  A direct transition to 

turbulence in a rotating Bénard convection was 

studied by Niemala and Donnelly [15] in which a 

transition from a certain heat transfer by conduction 

implied directly to a turbulent convective flow in a 

rotating Bénard cell is observed.  The effect of 

rotation on Rayleigh-Bénard convection was studied 

extensively by Professor Chandrasekhar [16] and 

added in the recent developments by Knobloch [17] 

wherein plenty of results have been derived that has 

been extensively used in the study of the paper. Peter 

Vadasz [18] also studied the natural convection in the 

rotating flows wherein the effect of rotation plays an 

important role in the pure fluids and also in the porous 

media. The paper mainly concentrates on the 

comparison of fluid layers with and without the effect 

of rotation. Ramachandramurthy et al. [19] studied the 

temperature dependent volumetric heat source on the 

onset of the Rayleigh-Bénard convection. It was 

found that a linear stability analysis is used for the 

stationary convection and the Taylor number delays 

the heat transfer. 

 
List of symbols  

 ml, -  Horizontal wave numbers 

d - Distance between the two plates 

k̂ - Unit vector in the vertical direction 

a - Wave number 
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p - Hydrodynamic pressure 

q


- ),,( WVU  Velocity 

kR


Pr  - Prandtl number 

k

Tdg
R R

a


 3
 - Rayleigh number 

t  - Time 

T  - Temperature 
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2

2244



Rod  - Taylor number 

k

Qd
Ri

2

 - Internal Raleigh number 

WVU ,, - Dimensional horizontal and vertical velocity 

components   

g


- Acceleration due to gravity     

k - Thermal conductivity   

x  - Horizontal coordinate   

z  - Vertical coordinate    

 - Coefficient of thermal expansion 

 - Angular velocity of rotation 

 - Density 

R - Density of the fluid taken at reference temperature 

mTT   

T - Temperature gradient  

  - Growth rate of perturbation  
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zyx 











  Three-dimensional Laplacian 

operator 

2

1 -
2

2

2

2

yx 






  Two-dimensional Laplacian operator 

 - Dynamic viscosity of the fluid 

 -  z -component of vorticity 

















y

u

x

v
 

 - Scaled frequency of oscillation  

Subscripts: 

c  - Critical value 

b - Basic state 

Superscripts: 
*

- Dimensionless quantity 
'
- Perturbed quantity 

o - Oscillatory 

s - Stationary 

 

 

 

2.Mathematical formulation  
A Boussinesquian fluid in an infinite rotating 

horizontal layer having depth d in the presence of 

internal heat source is considered. Also considering 

),,( zyx  as a cartesian coordinate system where its 

origin is taken at the lower boundary while the z-axis 

is pointing vertically upwards.  T is taken as the 

difference of temperature between the lower plate and 

the upper plate. This infinite horizontal layer is 

considered to be rotating uniformly with a constant 

angular velocity 
0  around z-axis (Figure 1). 

 
Figure 1 Physical configuration for the Rayleigh-

Bénard situation in Boussinesquian fluid 

 

The applicable governing equations to describe the 

Boussinesquian flow under the considered model are: 

 

Continuity Equation: 

,0 q


 (1) 

Conservation of linear Momentum: 

,
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2 
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(2) 

Conservation of Energy: 

),().( 2

oTTQTkTq
t

T




 
 

(3) 

Equation of state: 

 )].(1[ oR TT    (4) 

 

3.Basic state 

The fluid is at rest in this state and heat is transferred 

only by conduction. The fluid in this state is described 

by: 

.0,)(,)(,)(  bbbb qzTTzzpp




 

 (5) 

Substituting Equation 5 into Equation 2-4, we get: 

,k̂g
dz

dp
b

b 
 

(6) 
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,0)(
)(2




ob

ob TTQ
dz

TTd
k

 

(7) 

)].(1[ obRb TT    (8) 

 

Solving the differential Equation 7, we get 

.
)(

))1((

i

i
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RSin

d

z
RSin

TTT



  

 

     

(9) 

 

4.Linear stability analysis  
Let the system be perturbed from the basic state. 

Equations in this state are given by, 

 

.
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',','









qqq

TTTppp

b

bbb



 

 

 

(10) 

The prime quantities indicate that they are 

infinitesimal perturbations while subscript 'b' implies 

the value in the basic state. Equation 10 is substituted 

into Equation 1-4, also making use of the basic state 

of Equation 5-9, we get, 
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(12) 
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(13) 

'.' TR   (14) 

 

Substituting Equation 14 in 12 and non-

dimensionalizing resultant equation and Equation 13 

using the definitions as follows: 

.,
'

,

,
'

),,,(
1

),,(

1

*

2

*

2

*

****

















































p

p
p

k

d

k

d

t
t

T

T
Tzyx

d
zyx




 

 

 

 

(15) 

 

Using Equation 15 in Equation 12 and 13, and 

dropping the asterisks for simplicity we get the 

resultant equations as: 

,
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(16) 

,)().( 2 TRTzWfTq
t
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(17) 

where 
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))1((
)(

i
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RSin
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
 . 

Neglecting the non-linear terms in Equation 16 and 

17, we get 
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Applying curl twice on Equation 18 to eliminate the 

term containing pressure, we get, 
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(20) 

Applying curl once on Equation 18, we get, 
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(21) 

Equation 21 is called the vorticity transport equation. 

The infinitesimal perturbation W, $\xi$ and T are 

assumed to be periodic waves and therefore they have 

a normal mode solution which is in the form 
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Equation (22) is substituted into equations (19)-(21), 

we get 
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,)()( 222 TRTaDzWfT i
 

(24) 
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(25) 

where .
dz

d
D   We discuss marginal stability by 

putting both stationary and oscillatory convection 

under consideration. 

  

5.Galerkin method  
Equations 23-25 are solved using the Galerkin 

method. We choose trial functions such that they 

satisfy the given boundary conditions however they 

need not satisfy the differential equations thereby 

obtaining an approximate solution of the differential 

equation. This will lead to residuals upon substituting 

these trial functions into the differential equations. 

This method demands the residuals to be orthogonal 

to each of the trial functions. In this method, we 

thereby expand the velocity and the temperature as 

follows: 
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 are the trial 

functions discussed and 
jA , 
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jC  are 

constants.  

Multiplying the Equations 23-25 with W , T , and   

respectively and integrating them between 0 and 1 

with respect to z and substituting W , T , and   in 

the following manner, 1AWW  , 1 B , 

1CTT   in which the constants are A , B , C  with 
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1T , 1  being the trial functions satisfying the 

boundary conditions 
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(28) 

 in Equation (37) denotes integration with respect 

to z from 0 to 1. This procedure yields the following 

equation for Rayleigh number aR : 
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where, 
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Setting 0  for stationary convection, the equation 

(29) becomes 
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Setting  i  for oscillatory convection, the 

equation (29) becomes 
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Since 
aR  is not a complex number, we conclude that 

0  or 0L . 

The condition 0L  can be used to obtain the 

frequency of oscillations   and thereby obtaining the 

Rayleigh number in oscillatory convection as follows: 
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The boundary combinations considered in this paper 

are: 

Rigid-Rigid isothermal. 

W = DW = D  = T = 0, at z=0,1. 

Rigid-Free isothermal. 

W = DW = D  = T = 0, at z=0,  

W = D
2
W = D  = T = 0, at z=1. 

Free-Free isothermal. 

W = D
2
W = D  = T = 0, at z=0,1. 

Rigid-Rigid adiabatic. 

W = DW = D  = DT = 0, at z=0,1. 

Rigid-Free adiabatic. 

W = DW = D  = DT = 0, at z=0, 

W = D
2
W = D  = DT = 0, at z=1. 

Free-Free adiabatic. 

W = D
2
W = D  = DT = 0, at z=0,1. 

 

Table 1 The trial functions that satisfy the various boundary conditions 

Trial functions Rigid-Rigid Rigid-Free Free-free 

W1 )21( 32 zzz   234

2

3

2

5
zzz 

 )21( 32 zzz   

 1 zCos  zCos  zCos  

Isothermal temperature T1 2zz   
2zz   

2zz   

Adiabatic temperature T1 1 1 1 

 

6. Results 
 

 
Figure 2 against   for various values of   with   in 

case of rigid-rigid isothermal 

 

 

 

 

 
Figure 3 

aR  against a  for various positive 

values of 
iR  with 100Ta  in case of rigid-

rigid isothermal 
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Figure 4 
aR  against a  for various negative 

values of 
iR  with 100Ta  in case of rigid-

rigid isothermal 

 

 

 
 

Figure 5 
aR  against a  for various values of 

Ta  with 2iR  in case of rigid-free 

isothermal 

 

 
Figure 6 

aR  against a  for various positive 

values of 
iR  with 100Ta  in case of rigid-

free isothermal 

 
 

Figure 7 
aR  against a  for various negative 

values of 
iR  with 100Ta  in case of rigid-

free isothermal 

 

 
 

Figure 8 
aR  against a  for various values of 

Ta  with 2iR  in case of free-free 

isothermal 

 
 

Figure 9 
aR  against a  for various positive 

values of 
iR  with 100Ta  in case of free-

free isothermal 
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Figure 10
aR  against a  for various negative 

values of 
iR  with 100Ta  in case of free-

free isothermal 

 

 

 
 

Figure 11 
aR  against a  for various values of 

Ta  with 2iR  in case of rigid-rigid 

adiabatic. 

 

 
Figure 12

aR  against a  for various negative 

values of 
iR  with 100Ta  in case of rigid-

rigid adiabatic 

 
 

Figure 13
aR  against a  for various values of 

Ta  with 2iR  in case of rigid-free 

adiabatic. 

 

 
Figure 14 

aR  against a  for various negative 

values of 
iR  with 100Ta  in case of rigid-

free adiabatic 

 

 
Figure 15 

aR  against a  for various values of 

Ta  with 2iR  in case of free-free adiabatic 
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Figure 16 
aR  against a  for various negative 

values of 
iR  with 100Ta  in case of free-

free adiabatic 

 

7.Discussion 
The rotation's effect on the onset Rayleigh-Bénard 

convection in the presence internal heat generation in 

Boussinesquian fluid using linear stability analysis 

was investigated in this paper. The main emphasis of 

this study is to investigate the above effects on the 

onset of convection in the stationary mode since 

oscillatory convection appears to be highly 

improbable. The Eigen value of the problem was 

obtained with the help of Galerkin technique as a 

function of Ta  and
 iR . The linear stability was used 

to express the condition of stability in terms of the 

critical Rayleigh number
caR . Figure 2 is the plot of 

aR  against a  for various values of Ta  in case of 

rigid-rigid isothermal boundary conditions. It was 

found that the increase in the Taylor number Ta  

results in the increase in
aR , thereby delaying the 

onset of convection. Therefore, the onset of 

convection gets delayed by the decrease in the heat 

transport due to the increase ofTa . Thus, rotation 

strongly stabilizes the system. 

 

Figures 3 and 4 are the plot of 
aR  against a  for 

various positive and negative values of 
iR  in case of 

rigid-rigid isothermal boundary conditions. We found 

that the increase in values of 
iR  results in the 

decrease of
aR , thereby advancing the onset of 

convection. Therefore, the onset of convection is 

advanced by the increase in heat supply due to the 

increase of 
iR . Thus, increasing internal Rayleigh 

number 
iR  results in the destabilization of the system. 

Figures 5, 6, 7 are the plot of 
aR  against a  for 

various values of Ta , positive and negative internal 

Rayleigh number respectively in case of rigid-free  

isothermal boundary conditions. Figures 8,9,10 are 

the plot of 
aR  against a  for various values of Ta , 

positive and negative internal Rayleigh number 

respectively in case of rigid-free  isothermal boundary 

conditions. Figures 11 and 12 are the plot of 
aR  

against a  for various values of Ta , and negative 

internal Rayleigh number respectively in case of rigid-

rigid adiabatic boundary conditions. Figures 13 and 

14 are the plot of  
aR  against a  for various values of 

Ta , and negative internal Rayleigh number 

respectively in case of rigid-free adiabatic boundary 

conditions. Figures 15 and 16 are the plot of 
aR  

against a  for various values of Ta , and negative 

internal Rayleigh number respectively with respect to 

free-free adiabatic boundary conditions. The plots for 

isothermal and adiabatic temperature boundary 

conditions are qualitatively similar. Equation (33) can 

be used to conclude that oscillatory convection is 

highly improbable since 
2  remains less than 0 for 

all combinations of the parameters Pr ,
iR  andTa . 

Thus, we conclude that the oscillatory motions are not 

possible for this problem.  

 

8.Conclusion and future work 
The stability of a rotating infinite horizontal layer of 

a Boussinesquian fluid in the presence of internal 

heat generation is investigated. Linear stability 

analysis was made using normal mode analysis and 

Galerkin technique. The conclusions drawn from the 

study are:Both internal Rayleigh number and electric 

Rayleigh number destabilize the system. 
(i)The role of Taylor number Ta  is to strongly 

stabilize the system while the internal Rayleigh 

number destabilizes the system. 

(ii)
FF

c

RF

c

RR

c RRR  , cR  is the critical Rayleigh 

number and the subscripts represents the different 

velocity boundary conditions. This holds for both 

adiabatic and isothermal boundaries. 

(iii)In the case of a rotating horizontal layer of 

Boussinesquian fluid, stationary convection seems 

to be the mode of instability preferred rather than 

oscillatory convection. 

 

A further analysis can be made for the following.  

 The effect of internal heat generation and rotation 

on the onset of Rayleigh-Benard electro 

convection in Boussinesquian fluid. 
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 The effect of internal heat generation and rotation 

on the onset of Rayleigh-Benard magneto 

convection in Boussinesquian fluid. 
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