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1.Introduction 
The assumption of a closed function is a dissimilar to 

previous definition by Rockafellar et al. [1, 2], 

although they coincide for proper functions but our 

assumption easily extends to infinite dimensions [3]. 

Von Neumann's minimax theorem had both the sets 

C and D simplices [4]. Brouwer proved this by fixed 

point theorem. Fisher introduced information 

function useful in signal reconstruction [5]. Interior 

point methods depend on the inequality in 

Logarithmic homogeneity [6]. No one can consider 

biconjugate unless it itself has a closed convex 

epigraph, since any conjugate function must have a 

closed convex epigraph. Nonempty compact convex 

sets in E and everywhere-finite sub linear functions 

have Fenchel conjugacy between them [7]. 

 

Finite dimensional Lagrangian convex duality 

theorem provides comparative study on problems on 

duality gap and zero duality gap and analysis of dual 

and primal solutions in convex optimization. Elegant 

feature of theory is the duality between a convex 

function and its Fenchel conjugate. The study of 

optimization is significantly depends on its control to 

describe duality theory for convex programming 

problems. The perfectly well-defined dual problems 

without any assumptions on the functions and g show 

the `weak duality inequality' [8]. This is great feature 

of finite-dimensional convex duality theory and its 

development in infinite dimensions [9].  

 

 

 
*Author for correspondence 

A duality gap can be easily defined by a problem 

where the primal value is strictly greater than the dual 

value [10]. We investigate conditions ensuring that 

there is no duality gap and the result highlights the 

proof of the Lagrangian necessary conditions which 

in fact describes the existence of a dual optimal 

solution [11, 12]. To prove that there is no duality 

gap we consider following two different approaches: 

first uses the Slater condition to force attainment in 

the dual problem and second (dual) approach uses 

compactness to force attainment in the primal 

problem [2]. The problem is said to be normal when 

the value function v is lower semi continuous at 0 [1] 

and the problem is said to be stable if 

(0) ( (0) )v orv    [13]. On the gap 

functions of prevariational inequalities Yang [11] and 

on the dual gap function for variational inequalities  

Zhang et al. [12] are some good reference work on 

duality gap functions. Chong  et.al derived Sufficient 

and necessary conditions for the stable Fenchel 

duality and for the total Fenchel duality , also proved 

some sufficient and necessary conditions for the 

strong Fenchel duality and the strong converse 

Fenchel duality  using the properties of the epigraph 

of the conjugated functions [14]. Jeyakumar et al. 

developed a robust theorem of the alternative for 

parameterized convex inequality systems using 

conjugate analysis and derives a new robust 

characteristic cone constraint qualification necessary 

and sufficient for strong duality between the robust 

equivalent and its Lagrangian dual [15]. Wang et.al 

establishes some total and strong Fenchel dualities 

for convex optimization problems accompanying data 

uncertainty within the framework of robust 
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optimization in locally convex Hausdorff vector 

spaces [16]. Fajardo used generalized convex 

conjugation theory instead in place of Fenchel 

conjugation and construct an alternative dual 

problem, using the perturbational approach, for a 

general optimization one defined on a separated 

locally convex topological space [17]. 

 

In the paper following points are focused: 

 Biconjugates of proper convex functions are 

developed to discuss the optimality conditions.  

 Relationship between convex function and its 

biconjugate and the contribution of these in 

optimization is described.  

 Lagrangian Duality theorem is used to describe the 

duality gap and zero duality gap between convex 

function and its conjugate. 

 

2.Preliminaries and definitions   
We have seen that for many important convex 

functions  : ,h E    , the biconjugate 

h  agrees identically with h. The bipolar cone 

theorem shows K K     for any closed convex 

cone K. In the paper we isolate exactly the 

circumstances when h = h   . We can easily check 

that h   is a minorant of h (that is, h h    

point wise). Our explicit plan in the paper is to find 

conditions on a point x in E guaranteeing

( ) ( )h x h x   . This becomes the key 

relationship for the study of duality in optimization. 

As we see in the paper, the conditions we need are 

both geometric and topological. This is neither 

particularly astonishing nor rigid. It is very to 

consider a function with its biconjugate without 

having a closed convex epigraph, since any conjugate 

function must have a closed convex epigraph. On the 

other side, this restriction is not mainly strong, as the 

previous study shows that convex functions 

fundamentally have strong continuity properties. 

 

Consider the function  : ,h E     is 

closed if its epigraph is a closed set. Which indicates 

that h is lower semi continuous at a point x in E if  

                                      

liminf ( )( lim inf ( )) ( )r r

x r s
h x h x h x

 
   

for any sequence rx x . A function 

 : ,h E     is lower semi continuous if it 

is lower semi continuous at every point in E: this is in 

fact corresponding to h being closed, the result holds 

if and only if h has closed level sets. Any two 

functions h and g satisfying h g  (in which case 

we call h a minorant of g) must satisfy h g  , 

and hence h g    . 

 

3.Fenchel biconjugation 

Theorem 3.1 (Fenchel biconjugation) The 

properties below are equivalent, for any function

 : ,h E    : 

(a) h is closed and convex; 

(b) h = h  ; 

(c) for all points x in E, 

 ( ) sup ( ) minh x x anaffine orantof h 
   

(1) 

Hence the conjugacy operation induces a bijection 

between proper closed convex functions. 

 

Proof. We can assume h is proper. Since conjugate 

functions are always closed and convex we know 

property (b) implies property (a). Also, any affine 

minorant   of h satisfies h h        , 

and hence property (c) implies (b). It remains to show 

(a) implies (c). 

Fix a point x  in E. Assume first

( )x cl domh , and fix any real r < h ( x ). 

Since h is closed, the set  ( )>x h x r  is open, so 

there is an open convex neighborhood U of x  with 

h(x) > r on U. Now note that the set 

Udomh cont is nonempty, so we can apply 

the Fenchel theorem to deduce that some element   

of E satisfies 

   inf ( ) ( ) ( ) ( )U U
x

r h x x h        
  

Now define an affine function

( ) , ( )U r        . Inequality (3.2) shows 

that   minorizes h, and by definition we know

( )x r  . Since r was arbitrary, (c) follows at the 

point x = x . 

Suppose on the other hand x  does not lie in cl (dom 

h). By the Basic separation theorem there is a real b 

and a nonzero element a of E satisfying

, >b a,xa x  , for all points x in dom h. 

(2) 
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The argument in the preceding paragraph shows there 

is an affine minorant  of h. But now the affine 

function ( ) ( , )k a b      is a minorant of h 

for all 1,2,......k   Evaluating these functions at 

x = x  proves property (c) at x . The final remark 

follows easily.  

We can immediately deduce that a closed convex 

function  : ,h E    equals its 

biconjugate if and only if it is proper or identically 

  or . Restricting the conjugacy bijection to 

finite sub linear functions gives the following result. 

 

Corollary 3.2 (Support functions) Fenchel 

conjugacy induces a bijection between everywhere-

finite sub linear functions and nonempty compact 

convex sets in E: 

 

(a) If the set C E  is compact, convex and 

nonempty then the support function C


 is 

everywhere finite and sub linear. 

(b) If the function :h E R  is sub linear then

Ch   , where the set 

 , ( )C E d h d for all d E      

is nonempty, compact and convex. 

 

Proof. See in previous section. Conjugacy offers a 

convenient way to recognize when a convex function 

has bounded level sets. 

 

Theorem 3.3 (Moreau-Rockafellar) A closed 

convex proper function on E has bounded level sets if 

and only if its conjugate is continuous at 0. 

 

Proof. By Proposition, a convex function 

 : ,h E     has bounded level sets if and 

only if it satisfies the growth condition 
                                                   ( )

liminf >0
x

f x

x

 

 

Since f  is closed we can check that this is 

equivalent to the existence of a minorant of the form

( )k f     , for some constants   > 0 and k. 

Taking conjugates, this is in turn equivalent to f   

being bounded above near 0, and the result then 

follows by Theorem (Local boundedness). 

 

Strict convexity is also easy to recognize via 

conjugacy, using the following results. 

 

Theorem 3.4 (Strict-smooth duality) A proper 

closed convex function on E is essentially strictly 

convex if and only if its conjugate is essentially 

smooth. 

What can we say about h when the function 

 : ,h E     is not necessarily closed? To 

answer this question we introduce the idea of the 

closure of h, denoted cl h, defined by 

( ) ( )epi cl h cl epih   (3) 

It is easy to verify that cl h is then well-defined. The 

definition immediately implies cl h is the largest 

closed function minorizing h. Clearly if h is convex, 

so is cl h.   

 

Proposition 3.5 (Lower semi continuity and 

closure) A convex function  

 : ,h E     is lower semi continuous at a 

point x where it is finite if and only if f (x) = (cl f

)(x). In this case f  is proper. 

We can now answer the question we posed at the 

beginning of the section. 

 

Theorem 3.6 Suppose the function 

 : ,h E     is convex. 

(a) If h   is somewhere finite then h   = cl h. 

(b) For any point x where h is finite, h(x) = ( )h x 

if and only if h is lower semi continuous at x. 

 

Proof. Observe first that since h   is closed and 

minorizes h, we know h cl h h    . If h   is 

somewhere finite then h   (and hence cl h) is never

 , by applying Proposition 3.6 (Lower semi 

continuity and closure) to h  . On the other hand, if 

h is finite and lower semi continuous at x then 

Proposition 3.6 shows cl h(x) is finite, and applying 

the proposition again to cl h shows once more that cl 

h is never . In either case, the Fenchel 

biconjugation theorem implies

( )cl h cl h h cl h      , so 

cl h h  . 

Part (a) is now immediate, while part (b) follows by 

using Proposition 3.6 once more. 
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4.Lagrangian duality  
Consider a convex program like that of studied in 

section-3.2 

inf ( )

( ) 0

f x

subject to g x

x E





 

  (4)                             

Here, the function f  and the components 

 1 2, ,...., : ,mg g g E    are convex, 

and satisfy
1
m

idom f domg  . As before, 

the Lagrangian function 

 : ,mL E R     is defined by

( ; ) ( ) ( )TL x f x g x   . 

Notice that the Lagrangian encapsulates all the 

information of the primal problem (4.3.1): clearly 

                               

( ),
sup ( ; )

,mR

f x if xis feasible
L x

otherwise



 


 



 

so if we denote the optimal value of (4.3.1) by 

 ,p   , we could rewrite the problem in 

the following form: 

inf sup ( ; )
x E mR

p L x






 


   (5)                    

This makes it rather natural to consider an associated 

problem: 

sup inf ( ; )
x EmR

d L x






 


  (6)                     

Where  ,d   is called the dual value. 

Thus the dual problem consists of maximizing over 

vectors   in mR
 the dual function

( ; )( ) infx L x   . 

This dual problem is perfectly well-defined without 

any assumptions on the functions f  and g. It is an 

easy exercise to show the `weak duality inequality’

p d . Notice   is concave. 

 

It can happen that the primal value p is strictly larger 

than the dual value d. In this case we say there is a 

duality gap. In this section we investigate conditions 

ensuring there is no duality gap. As the chief tool in 

our analysis is the primal value function

 : ,mv R    , defined by 

 ( ) ( )( ) inf f x g x bv b  . (7)                     

 

Below we summarize the relationships between these 

various ideas and pieces of notation. 

Proposition 4.1 (Dual optimal value) 

(a) The primal optimal value p is (0)v . 

(b) The conjugate of the value function satisfies 

( ), 0

,
( )

if

otherwise
v

 
  

 



 

 (c) The dual optimal value d is (0)v  . 

 

Proof. Part (a) is just the definition of p. Part (b) 

follows from the identities 

                      

 

 

 

   

sup ( )

sup ( ) ( ) , , ,

sup ( ( ) ) ( ) ,

inf ( ) ( ) sup

( ), 0

,

( ) T m

T m m

T m

T T m

b v b b R

b f x g x z b x dom f b R z R

g x z f x x dom f z R

f x g x x dom f z z R

if

otherwise

v 





 

 









   

       

     

      

 
 





 

  Finally, we observe 

( ) ( ) ( )sup inf inf
m mm R RR

v vd
 

    

   

       

  

So part (c) follows. Notice the above result does not 

use convexity. 

 

The reason for our interest in the relationship 

between a convex function and its biconjugate should 

now be clear, in light of parts (a) and (c) above. 

 

Corollary 4.2 (Zero duality gap) Suppose the value 

of the primal problem (4.1) is finite. Then the primal 

and dual values are equal if and only if the value 

function v is lower semi continuous at 0. In this case 

the set of optimal dual solutions is (0)v . 

 

Proof. By the previous result, there is no duality gap 

exactly when the value function satisfies

(0) (0)v v  , so Theorem 3.8 proves the first 

assertion. 

 

By part (b) of the previous result, dual optimal 

solutions   are characterized by the property

0 ( )v   , or equivalently,

( ) (0) 0v v     . But we know

(0) (0)v v  , so this property is equivalent to 

the condition (0)v  . 
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The above result gave a new on the proof of the 

Lagrangian necessary conditions: this actually 

demonstrates the existence of a dual optimal solution. 

To prove that there is no duality gap we consider 

following two different approaches: first uses the 

Slater condition to force attainment in the dual 

problem and second (dual) approach uses 

compactness to force attainment in the primal 

problem.  

 

Theorem 4.3 (Dual attainment) If the Slater 

condition holds for the primal problem (4.1) then the 

primal and dual values are equal, and the dual value 

is attained if finite. 

 

Proof. If p is  there is nothing to prove, since we 

know p d . If on the other hand p is finite then, as 

in the proof of the Lagrangian necessary conditions, 

the Slater condition forces (0)v   .Hence v is 

finite and lower semi continuous at 0  and the result 

follows by Corollary 4.3.6 (Zero duality gap). An 

indirect way of stating the Slater condition is that 

there is a point x̂  in E for which the set 

 ˆ( ; )mR L x     is compact for all real . 

The second approach uses a `dual' condition to ensure 

the value function is closed. 

 

Theorem 4.4 (Primal attainment) Suppose that the 

functions 

 1 2, , ,...., : ,mf g g g E     are 

closed, and that for some real ˆ 0   and some 

vector ̂  in mR , the function 
0

ˆ ˆTf g   has 

compact level sets. Then the value function v defined 

by equation (4.3.4) is closed, and the infimum in this 

equation is attained when finite. Consequently, if the 

functions 
1 2, , ,...., mf g g g  are in addition 

convex and the dual value for the problem (4.1) is not

 , then the primal and dual values, p and d, are 

equal, and the primal value is attained when finite. 

 

Proof. If the points ( , )r
rb s  lie in epi v  for 

1,2,........,r   and approach the point (b; s), 

then for each integer r there is a point 
rx in E 

satisfying 1( )r
r rf x s   and ( )r rg bx 

Hence we deduce 
1

0 0 0( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ( ) r r
r

T T Tr b s bf g x s          . 

 

By the compact level set assumption, the sequence (
rx ) has a subsequence converging to some point x , 

and since all the functions are closed, we know 

( )f x s and ( )g x b . We deduce

( )v b s , so (b; s) lies in epi v  as we required. 

When ( )v b  is finite, the same argument with 

( , )r
rb s  replaced by ( , ( ))b v b  for each r shows 

the infimum is attained. 

 

If the functions 
1 2, , ,...., mf g g g  are convex 

then we know v is convex. If d is   then, then 

again from the inequality p d , there is nothing to 

prove. If ( (0))d v   is finite then Theorem3.8 

shows cl vv   , and the above argument shows cl

v =v . Hence (0) (0)p v dv    , and the 

result follows. 

 

5.Conclusion  
Any proper convex function h with an affine 

minorant has its biconjugate h   somewhere finite. 

(In fact, because E is finite-dimensional, h   is 

somewhere finite if and only if h is proper) Notice 

that if either the objective function f or any one of 

the constraint functions
1 2, ,...., mg g g  has 

compact level sets then the compact level set 

condition in the primal attainment results hold. 

Relationship between convex function and its 

biconjugate results a great contribution in 

optimization.  Lagrangian Duality theorem describe 

duality gap and zero duality gap between convex 

function and its biconjugate. 
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