
International Journal of Advanced Computer Research, Vol 12(59)

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

http://dx.doi.org/10.19101/IJACR.2021.1152064

12

K-means based quality prediction of object-oriented software using LR-ACO

Sandeep Ganpat Kamble
*
 and Animesh Kumar Dubey

Department of Computer Science, PCST Bhopal, Madhya Pradesh

Received: 11-January-2022; Revised: 25-March-2022; Accepted: 26-March-2022

©2022 Sandeep Ganpat Kamble and Animesh Kumar Dubey. This is an open access article distributed under the Creative

Commons Attribution (CC BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

1.Introduction
The current trend in the programming is mainly rely

on the proper bug detection as it is crucial in any

software monitoring or testing system [1−5]. It also

determines the quality of any software. It is important

as it will improve the reliability and useful in the

progress of the software life cycle. The main

components which are used in the quality predictions

are data hiding, encapsulation, inheritance and

polymorphism. It has been considered to test the

dynamic behaviour, usage, configuration

assessments, and reusability checking [6−10].

The quality estimation is important due to the need of

checking and validating the programming modules

[11, 12]. It covers all the tracks, potential software

faults at each stage and module synchronization. It

can be categorized level wise as it may affect the

system mildly or highly. The major problem with the

system identification is the data noise, missing

values, parameter cohesion and software bugs. It may

affect the performance of the system. Different

machine learning and approaches can be used for the

estimation like K-Nearest Neighbor (KNN), naive

Bayes (NB), decision tree (DT), logistic regression

(LR), support vector machine (SVM), random forest

(RF), linear regression, etc [13−17].

*Author for correspondence

The major challenges in the quality prediction are as

follows:

1. Parameter estimation and its association

2. Data arrangement and linking of missing values

3. Feature extraction and categorization

4. Object oriented features contribution

Considering the above challenges, the main objective

of this paper is to cluster object-oriented features

considering different class labels and apply

classification for the parametric analysis based on

feature optimization. For this reason, k-means

clustering algorithm has been applied for the

clustering of object-oriented features and then LR

and ant colony optimization (ACO) (LR-ACO) have

been used for the classification.

This paper is organized as follows. Review of

literature have been explored in section 2. Method

has been discussed in section 3. Section 4

investigated the result and elaborated the discussion.

Section 5 covers the summary with concluding

remarks.

2.Literature review
This section discusses the related work in the domain

of object-oriented programming defects. In 2017,

Hosseini et al. [18] carried out a methodical literature

review. To address research concerns, primary study

Research Article

Abstract
A quality prediction mechanism has been developed in this paper. K-means clustering algorithm has been applied for the

clustering of object-oriented features. Finally logistic regression (LR) and ant colony optimization (ACO) (LR-ACO) have

been used for the classification. The object-oriented parameters have been considered like polymorphism, encapsulation,

abstraction, inheritance and other object-oriented features for experimentation. The purpose of these features to

categorize the data in different class levels based on memory usage, reusability and multiple forms. Different

hyperparameters like dynamic allocation and feature margin have also been considered for the classification thresholds.

Different performance measures have been considered for the experimentation and the results shows the approach

effectiveness through different exploration.

Keywords
K-Means, LR, ACO, Polymorphism, Class, Inheritance.

International Journal of Advanced Computer Research, Vol 12(59)

13

findings are combined (thematic, meta-analysis).

They discovered 30 primary studies that met quality

standards. The choice of metrics affects performance

measures, with the exception of precision. The most

typical measurements are recall, precision, f-measure,

and AUC. In cross project defect prediction (CPDP),

models based on decision trees and nearest

neighbours typically perform better than models

based on the widely used NB. In 2018, Zaffar et al.

[19] concentrated on the crucial characteristics of

students taking programming classes that were

employed in some of the earlier research. They also

highlighted various classification prediction

techniques to forecast students' achievement in

programming courses. They took action to raise

educational standards, and all those involved in

education benefited from their efforts. In 2019,

Glazier and Garlan [20] suggested a method that

allowed the development of a meta-manager, a

higher-level autonomic system that neither directly

coordinates the operations of the sub-autonomic

managers nor subsumes the control functions.

Instead, they packed and abstract each subsystem's

behaviour into a parameterized adaptation policy that

the meta-manager can modify to fine-tune the

subsystem adaption's adaptive behaviour. Further,

they provided a method for meta-managing a set of

autonomous subsystems that preserves local

autonomy while allowing for the synthesis of

stochastic game strategies to increase global

aggregate utility. In 2019, KS [21] forecast software

reliability by modelling the relationship between

object-oriented design metrics and object-oriented

programme dependability. The system is made up of

modules for the classifier, testing, and reliability

computation. The system is made up of classifier,

metrics creation, testing, and reliability calculation

modules. In 2020, Miholca and Oneţ-marian [22]

offered three software metrics suites derived from

conceptual and structural connection, and they

examined how various combinations of these metrics

affect how well software defect prediction model’s

function. They evaluated the relative performance of

the models while evaluating the conceptual

connection utilising features extracted with LSI

versus Doc2Vec in combination with Cosine versus

Euclidean similarity. The datasets used were ant 1.7,

jEdit 3.2, 4.0, 4.1, 4.2, 4.3 and tomcat 6.0 and the

method used were first, COMET and Promise. The

applied method logistic regression, KNN and

artificial neural network were applied on the used

dataset. The logistic regression achieved the highest

value of 0.917 in first method of jEdit 4.3 dataset

whereas KNN achieved the highest value of 0.948 in

COMET method of jEdit 4.3 and ANN achieved the

highest value of 0.919 in first method of jEdit 3.2

dataset. In 2021, Azzeh et al. [23] performed review

to categories, use case points (UCP) effort estimation

studies according to four factors: contribution kind,

research methodology, dataset type, and UCP

methodologies. To examine these works from a

variety of angles, including estimate accuracy, a

supportive estimation environment, and the effect of

combining approaches on UCP accuracy. The UCP

research' main methodologies were enhancement and

construction procedures. The development of

estimate tools, particularly intelligent systems that

convert use case descriptions to UCP metrics,

received little attention. Additionally, they looked

into a few journals to assess the range of prospective

sources for estimation studies and awareness of

published results. In 2021, Jin [24] suggested a novel

distance metric learning approach that relies on cost

sensitive learning to lessen the effect of sample class

imbalance. This approach is then applied to the large

margin distribution machine (LDM) to replace the

conventional kernel function. Further, they proposed

the improved cost sensitive (CS) LDM. The

improved CSLDM (CS-ILDM) was applied to five

publicly available datasets gathered from NASA

metric data repository. In addition to having

acceptable predictive performance, CS-ILDM also

has the lowest cost per incorrect prediction. In 2021,

Colakoglu et al. [25] examined the current topics of

study and developments on this subject that have

appeared in the literature during the past ten years.

On 70 articles and conference papers that were

published between 2009 and 2019 on software

product quality metrics (SPQM) as indicated in their

titles and abstracts, a systematic mapping analysis

was conducted. The outcome is presented via

diagrams, explanatory text, and the mind mapping

technique. The results contain a trend map from 2009

to 2019, information about this field and measuring

tools, concerns identified as having room for

advancement, and consistency between conference

papers, journals, and internationally recognized

quality models. In 2021, Feng et al. [26] used the

stable Synthetic Minority Oversampling Technique

(SMOTE) to reduce the randomness. They applied

the DT, KNN, RF and SVM as the four classifiers on

26 publicly available datasets from PROMISE

repository. In terms of AUC, balance, and MCC,

respectively, the difference between the worst and

greatest performances of SMOTE-based

oversampling approaches can reach up to 23.3%,

32.6%, and 204.2%. In 2021, Matloob et al. [27]

offered concise details on the most recent trends and

Sandeep Ganpat Kamble and Animesh Kumar Dubey

14

developments in ensemble learning for predicting

software defects and established a foundation for

further advancements and additional reviews. They

discovered that the random forest, boosting, and

bagging ensemble approaches are often used by

researchers. The use of stacking, voting, and Extra

Trees is less common. They discovered that many

studies have suggested a number of interesting

frameworks that use ensemble learning techniques,

including EMKCA, SMOTE-Ensemble, MKEL,

SDAEsTSE, TLEL, and LRCR. In 2021, Meng et al.

[28] suggested a semi-supervised software defect

prediction model which combined the feature

normalisation, over-sampling technology, and a Tri-

training process. In order to remove the impact of

excessively high or excessively low feature values on

the model's classification performance, the feature

data are first smoothed using the feature

normalisation approach. Second, the uneven

categorization of labelled samples is resolved by

expanding and sampling the data using the

oversampling method. The Tri-training approach then

creates a fault prediction model using machine

learning on the training samples. They used the CM1,

PC1, KC1 and KC2 as the dataset from Promise

library. They used the Naïve Bayes, Decision Tree,

AdaBoost, S4VM+ and Tri_SSDPM as the

classifiers. The accuracy of 0.874, precision of 0.886,

recall of 0.828 and F-measure of 0.855 was obtained.

In 2021 Ming et al. [29] put forth the dynamic anchor

learning (DAL) approach, which makes use of the

newly established matching degree to thoroughly

assess the anchors' capability for localization and

performs a quicker label assignment process. With

just a few horizontal preset anchors, they can now

recognise arbitrary-oriented objects more effectively

because of the newly added DAL. Results from

experiments on the three remote sensing datasets

HRSC2016, DOTA, and UCAS-AOD as well as the

scene text dataset ICDAR 2015 demonstrated that

their strategy significantly outperformed the baseline

model. They achieved the mAP/F score of 81.3, 88.3

and 76.1 in ICDAR 2013, NWPU VHR-10 and VOC

2007. In 2021, Mustaqeem and Saqib [30] proposed a

hybrid machine learning strategy combining Principal

component analysis (PCA) and SVM. In order to

carry out their investigation, they used PROMISE

dataset of 344 observations of CM1, 2109

observations of KC1 dataset from the NASA

directory. The dataset was then divided into training

and testing datasets of 104 observation from CM1

dataset, and 633 observations from KC1 dataset.

Additionally, they used the GridSearchCV technique

to fine-tune the hyperparameters. They discovered

that the proposed hybrid model has higher accuracy

of 95.2% and 86.6% in CM1 and KC1 datasets. In

Serban et al. [31] used the Landsat library of satellite

pictures from 1973 to 2019 to evaluate the LUCC.

Combining the Support Vector Machine (SVM)

technique with object-based image analysis (OBIA),

a theme change detection analysis was carried out.

For the years 1973, 1986, 2000, and 2019, four types

of LUCC (forest, grass, water, and anthropic) were

retrieved with an overall accuracy of >90%. In 2021,

Sun et al. [32] collaborative filtering-based source

projects selection (CFPS) method, which is based on

collaborative filtering. They applied C4.5, LR, NB,

RF and sequential minimal optimization as the

machine learning algorithms. The average MAP of

0.6518 and average MRR of 0.8688 was received. In

2021, Tahir et al. [33] used a regression-based

approach. They were able to determine the influence

based on the defects. In 2021, Wu et al. [34]

proposed the multi-source heterogeneous cross-

project defect prediction (MHCPDP) technique. It

has been used for the detection of unrelated features.

In 2022, Gu et al. [35] established an object-oriented

probability integration prediction model framework.

They introduced an object-oriented method coupled

with the traditional probability integration method

and then created the framework. The primary

variables influencing mining subsidence, namely the

subsidence coefficient, thickness, and dip angle, were

subjected to sensitivity analysis. Engineering

scenarios are used to test the predictability of the

model, and the primary mining subsidence impacting

elements are also examined. The outcomes

demonstrated that the projected outcomes of the

model are essentially compatible with the situation.

In 2022, Guo et al. [36] combined an object-oriented

methodology and a random forest algorithm to

provide an effective and practical method for

identifying urban trees. Finally, utilising the RF,

SVM, and KNN classifiers, the categorization of

urban trees was carried out based on the nine

methods. The findings demonstrate that the RF

classifier outperforms SVM and KNN.

The analysis of some of the selected paper is shown

in Table 1.

International Journal of Advanced Computer Research, Vol 12(59)

15

Table 1 Analysis of the selected papers
S. No. Author Dataset Method Approach Result Limitation

1 Aktaş and

Buzluca

(2018)
[37]

5,973 Mylyn

task sessions

from Eclipse
Bugzilla were

used in total.

They identified the most

pertinent subset of

measurements, they
employed the PCA and

correlation-based feature

selection (CFS)
methodologies. Then

lastly, they applied

Random Forest to find
error prone classes.

They suggested a

method for creating

machine learning-based
models for predicting

bugs. They address

issues with labelling and
feature selection.

Values for recall,

precision, and f-

measure are
0.725, 0.828, and

0.773,

respectively.

Each project has its

own personality,

hence multiple
models should be

developed for

various software
systems.

2 Chhiba et al.

(2018)
[38]

9 and 7 java

software
development

projects.

They created the

"Maintainability
Estimation Model," a

multivariate linear model

that assesses the
maintainability in terms of

its self-description,

simplicity, and modularity.

According to their self-

description, simplicity,
and modularity, the

maintainability is

estimated by the
maintainability model.

While R.C. Martin's

measures are used to
measure simplicity and

modularity,

R2 achieved for

modularity
model is 0.862

and for similarity

model is 0.958

More advanced

maintainability
assessment models

can be created by

conducting a
broader study with

a range of industrial

projects in various
fields.

3 Tripathi et

al.
(2018)

[39]

QWS Dataset They suggested creating

prediction models based on
16 aggregate measures and

demonstrated that these

aggregate measures
differed significantly from

one another. Six feature
selection methods are used

to choose the optimum

feature subset, and they
used Extreme Learning

Machines (ELM) with

various kernels to create
prediction models.

By utilising CK and

object-oriented metrics
of the underlying Java

files, they carried out an

empirical investigation
on the prediction of 12

QoS factors for online
services. For each

WSDL, they combined

CK and OO scores using
16 different

measurements. To

identify important
characteristics, six

feature ranking and

extraction algorithms are
applied.

The ELM with

RBF kernel has a
mean and

median MMRE

of 0.369 and
0.346,

respectively.

4 Yang et al.

(2018)

[40]

Satellite

remote

sensing
ship image

dataset

(SRSS)

They proposed an

innovative multitask

rotational area
convolutional neural

network-based detection

approach.

They used the rotating

bounding box

regression, adaptive
region of interest (ROI)

align, prow direction

prediction, and rotational
non maximum

suppression make up the

majority of this model
(R-NMS).

They achieved

recall of 85.2%,

precision of
84.5% and F1-

score of 84.9%.

Objects with

significant levels of

overlap are
constrained.

5 Ha et al.

(2019)
[41]

They used

JM1, PC4,
KC2, MC1,

KC1, PC3,

CM1, MW1,

PC1, Class,

MC2, KC3

and PC2
datasets from

PROMISE

repository.

They applied LR, KNN,

DT, RF, SVM and
multilayer perceptron

For defect prediction,

they used object-
oriented metrics and

other machine learning

approaches. The

PROMISE datasets were

used for their

experimental
investigation, which

focused on seven well-

known machine learning
methods for defect

prediction. According to

the results, Multilayer
Perceptron performs best

for method-level

datasets, whereas
Support Vector Machine

The highest F1

score, AUC and
accuracy of 0.59,

0.91 and 0.91

was achieved in

Multilayer

Perceptron.

There is a need to

study classification
approaches to

address the problem

of dataset

imbalance in fault

prediction.

Sandeep Ganpat Kamble and Animesh Kumar Dubey

16

S. No. Author Dataset Method Approach Result Limitation

works best for class-
level datasets.

6 Kabir et al.

(2019)
[42]

jm1 and prop

defected
datasets.

They utilised the drift

detection method (DDM)
strategy and used the chi-

square test with Yates

continuity adjustment to
assess its statistical

significance. They applied

Naïve Bayes and Decision
Tree as the classifiers.

They used the widely

acceptable and well-
known DDM drift

detection approach to

look for concept drift in
the jm1 and prop

datasets.

The p-value

received for
3000 historical

datasets from NB

and DT are 0.027
and 0.025.

It is necessary to

run an experiment
using Fishers Exact

test on small

datasets of software
defects to track

changes in data

distributions that
affect the accuracy

of the predictions.

7 Zhang et al.
(2019)

[43]

Two publicly
accessible

datasets, such

as Emotions
and Scene, are

modified,

along with one
real-world

Herbs dataset.

For the multi-modal and
multi-label (MMML)

problem, they introduced a

novel instance-oriented
multi-modal classifier

chains (MCC) technique

that can produce
convincing predictions

with partial modalities.

They suggested an MCC
model for the MMML

problem that is inspired

by adaptive decision
approaches, taking into

account both multi-label

learning and feature
extraction.

They obtained
MCC of

2.520±0.182 for

Herbs,
1.519±0.313 for

emotions and

2.109±0.324 for
scene dataset.

It is time
consuming.

8 Afric et al.

(2020)
[44]

They used the

PROMISE
dataset

repository's

CM1, JM1,
KC1, KC2,

and PC1
datasets.

They applied

reconstruction error
probability distribution

(REPD) model, which can

deal with individual and
group abnormalities.

Further, they compared it
to five models: decision

tree, logistic regression, k-

nearest neighbours, and
hybrid SMOTE-Ensemble

on five different traditional

code feature datasets.

For the purpose of

predicting source code
defects, they presented

the REPD model. They

used the autoencoder
neural network

architecture, which
showed promising

results in anomaly

detection tasks, to
identify flaws in

software artefacts.

They

demonstrate that
their model

generates

noticeably
superior

outcomes,
raising the F1-

score by up to

7.12%.

It is necessary to

look at other
alternative anomaly

detection methods

that can be useful
for the subject of

predicting source
code defects.

9 Balogun et

al.

(2021)

[45]

Different

datasets

selected from

NASA were
like: CM1,

KC1, KC2,

KC3, MW1,
PC1, PC3,

PC4 and PC5.

They used DT and NB

models.

It has been used for

software fault prediction.

The average

accuracy

achieved from

Naïve Bayes and
Decision Trees

was 76.33 and

83.01.

It is worthwhile to

investigate the

impact of threshold

values on the
efficacies of FFS.

10 Khurma et
al.

(2021)

[46]

21 publically
available

datasets were

used.

They proposed a binary
variant of Moth flame

optimization (MFO)

algorithm by using Island
BMFO. Further, it is

compared by SVM, NB

and KNN.

In order to improve the
BMFO and address the

feature selection issue in

the context of software
defect prediction.

With an average
G-mean of 78%,

IsBMFO

followed by
SVM

classification is

the best model
for the SDP

problem when

compared to
other models.

There is need of
island-based

investigation.

3.Methods
In this paper, k-means clustering was used for the

object-oriented clustering features and then LR and

ACO have been used for the classification. The

phases are as follows:

1. Data pre-processing: For the experimentation

object-oriented programming have been

considered. We have considered the code of C++

and java programming modules.

2. Data clustering: K-means clustering was used for

the object-oriented clustering features. For the

comparison of the observed and expected results,

chi-square analysis has been used.

K-means algorithm

Step 1: Initialize the number of clusters.

Step 2: Assign, K random points. Categorize

according to the data point.

Step 3: Centroid computation.

International Journal of Advanced Computer Research, Vol 12(59)

17

Step 4: The above steps will be iterated till the

variation is minimized or nil.

4.1 Calculate the Euclidean distance for calculating

the distance between the data points.

4.2 Allocate the data point to the nearest centroid.

4.3 Finalize the data points.

3. Classification:Combination of LR and ACO

algorithms have been used for the classification.

Logistic regression:
Step 1: Assignments of linear weight. Parameter

initialization has been performed in this step.

Step 2: Predict the probability value based on

independent features for the dependent variable.

Step 3: Error margin calculated based on the

predicted value.

Step 4: Final estimation on the same region.

Step 5: Split the data for training and testing phase.

Step 6: Final estimated value

ACO Algorithm:

Step 1: Population initialization (Input the classified

LR values).

Step 2: Based on the categorized faults, initialize the

pheromone values.

Step 3: The above step has been repeated till the

weight assignment for each factor.

Step 4: Construct the optimized solution.

Step 5: Update the complete trails and stop the

iterations.

The working process is depicted clearly in Figure 1.

Figure 1 Working process of the complete approach

4. Results and discussion
In this section results have been discussed and

investigated. The performance metrics considered

here are F-score (FS), ratio (defect odd) (Rd) and

deviation margin (DM). It has been calculated as

follows:

FS= (2 ×P ×R) / (P+R) (1)

Rd= 2×R (1-P) / (1-P×R) (2)

DM= ((1-P) ×k-(1-R) ×k) (3)

Here precision is denoted by P, recall is indicated by

R. k value is 2.

The result for FS based on object-oriented parameters

like class module, object module, inheritance module

and polymorphism along with the Rd and deviation

margin have been discussed here. Figure 2 shows the

comparison of FS value considering different object-

oriented modules (set-1). Figure 3 shows the

Start

Data preprocessing

K-Means and Chi-square test

Threshold
Discard

LR and ACO

Performance comparison

Sandeep Ganpat Kamble and Animesh Kumar Dubey

18

comparison of FS value considering different object-

oriented modules (set-2). Figure 4 shows the

comparison of FS value considering different object-

oriented modules (set-3). Figure 5 shows the

comparison of Rd value considering different object-

oriented modules (set-1). Figure 6 shows the

comparison of Rd value considering different object-

oriented modules (set-2). Figure 7 shows the

comparison of Rd value considering different object-

oriented modules (set-3). Figure 8 shows the

comparison of deviation margin considering different

object-oriented modules (set-1). Figure 9 shows the

comparison of deviation margin considering different

object-oriented modules (set-2). Figure 10 shows the

comparison of deviation margin considering different

object-oriented modules (set-3). The results shows

that the performance measures are capable in the

detection of deviation margin in different object-

oriented modules. The size of the modules is varied

between 10 KB to 10 MB.

Figure 2 Comparison of FS value considering different object-oriented modules (set-1)

Figure 3 Comparison of FS value considering different object-oriented modules (set-2)

0

0.2

0.4

0.6

0.8

1

1.2

M1 M2 M3 M4 M5 M6

F
-S

co
re

Object oriented Modules

Class

Object

Inheritance

Polymorphism

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M6 M7 M8 M9 M10 M11

F
-S

co
re

Object oriented modules

Class

Object

Inheritance

Polymorphism

International Journal of Advanced Computer Research, Vol 12(59)

19

Figure 4 Comparison of FS value considering different object-oriented modules (set-3)

Figure 5 Comparison of Rd value considering different object-oriented modules (set-1)

Figure 6 Comparison of Rd value considering different object-oriented modules (set-2)

0

0.2

0.4

0.6

0.8

1

1.2

M12 M13 M14 M15 M16 M17

F
-S

co
re

Object oriented modules

Class

Object

Inheritance

Polymorphism

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M1 M2 M3 M4 M5 M6

R
-S

co
re

Object oriented modules

Class

Object

Inheritance

DMA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M7 M8 M9 M10 M11 M12

R
-S

co
re

Object oriented modules

Class

Object

Inheritance

DMA

Sandeep Ganpat Kamble and Animesh Kumar Dubey

20

Figure 7 Comparison of Rd value considering different object-oriented modules (set-3)

Figure 8 Comparison of deviation margin considering different object-oriented modules (set-1)

Figure 9 Comparison of deviation margin considering different object-oriented modules (set-2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M13 M14 M15 M16 M17 M18

R
-S

co
re

Object oriented modules

Class

Object

Inheritance

DMA

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

M1 M2 M3 M4 M5 M6

D
-S

co
re

Object oriented module

Class

Object

Inheritance

DMA

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

M7 M8 M9 M10 M11 M12

D
-S

co
re

Object oriented module

Class

Object

Inheritance

DMA

International Journal of Advanced Computer Research, Vol 12(59)

21

Figure 10 Comparison of deviation margin considering different object-oriented modules (set-3)

5. Conclusion
In this paper, k-means clustering algorithm has been

applied for the clustering of object-oriented features

along LR and ACO for the classification. Data pre-

processing, data clustering and classification have

been performed for the software quality estimation

considering object-oriented parameters. The

performance metrics considered are FS, Rd and DM.

The size of the modules is random and variable. The

modules belong to C++ and java codes considering

object-oriented parameters. The results indicate that

the approach is capable in calculating the

performance measure with less error margin.

Acknowledgment
None.

Conflicts of interest
The authors have no conflicts of interest to declare.

References
[1] Jorayeva M, Akbulut A, Catal C, Mishra A. Machine

learning-based software defect prediction for mobile

applications: a systematic literature review. Sensors.

2022; 22(7):1-17.

[2] Yadav DK, Azad C, Singh J, Adhikary DR. CIAFP: a

change impact analysis with fault prediction for

object-oriented software. International Journal of

Software Innovation (IJSI). 2022; 10(1):1-9.

[3] Saha JK, Patidar K, Kushwah R, Saxena G. Object

oriented quality prediction through artificial

intelligence and machine learning: a survey.

ACCENTS Transactions on Information Security.

2020; 5 (17): 1-5.

[4] Kumar P, Singh SN, Dawra S. Software component

reusability prediction using extra tree classifier and

enhanced Harris hawks optimization algorithm.

International Journal of System Assurance

Engineering and Management. 2022; 13(2):892-903.

[5] Dubey AK, Kushwaha GR, Shrivastava N.

Heterogeneous data mining environment based on

dam for mobile computing environments. In

international conference on advances in information

technology and mobile communication 2011 (pp. 144-

9). Springer, Berlin, Heidelberg.

[6] Goyal S. Handling class-imbalance with KNN

(neighbourhood) under-sampling for software defect

prediction. Artificial Intelligence Review. 2022;

55(3):2023-64.

[7] Pandit M, Gupta D, Anand D, Goyal N, Aljahdali HM,

Mansilla AO, et al. Towards design and feasibility

analysis of DePaaS: AI based global unified software

defect prediction framework. Applied Sciences. 2022;

12(1):1-26.

[8] Goyal S. Effective software defect prediction using

support vector machines (SVMs). International

Journal of System Assurance Engineering and

Management. 2022; 13(2):681-96.

[9] Cabral GG, Minku LL. Towards reliable online just-

in-time software defect prediction. IEEE Transactions

on Software Engineering. 2022.

[10] Dubey AK, Gupta U, Jain S. Computational measure

of cancer using data mining and optimization. In

international conference on sustainable

communication networks and application 2019 (pp.

626-32). Springer, Cham.

[11] Pemmada SK, Behera HS, Nayak J, Naik B.

Correlation-based modified long short-term memory

network approach for software defect prediction.

Evolving Systems. 2022:1-9.

[12] Jain B, Patidar S, Sudershan D. Heterogeneous

software defect prediction using generative models. In

11th international conference on communication

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

M13 M14 M15 M16 M17 M18

D
-S

co
re

Object oriented module

Class

Object

Inheritance

DMA

Sandeep Ganpat Kamble and Animesh Kumar Dubey

22

systems and network technologies (CSNT) 2022 (pp.

367-72). IEEE.

[13] Jena SD, Kaur J, Rani R. A review of prediction of

software defect by using machine learning algorithms.

Recent Innovations in Computing. 2022:61-70.

[14] Jain S. Medical data clustering and classification using

TLBO and machine learning algorithms. Computers,

Materials and Continua. 2021; 70(3):4523-43.

[15] Goyal J, Ranjan Sinha R. Software defect-based

prediction using logistic regression: review and

challenges. In second international conference on

sustainable technologies for computational

intelligence 2022 (pp. 233-48). Springer, Singapore.

[16] Rajnish K, Bhattacharjee V, Gupta M. A novel

convolutional neural network model to predict

software defects. Fundamentals and Methods of

Machine and Deep Learning: Algorithms, Tools and

Applications. 2022: 211-35.

[17] Dubey AK, Kapoor D, Kashyap V. A review on

performance analysis of data mining methods in IoT.

International Journal of Advanced Technology and

Engineering Exploration. 2020; 7(73):193-200.

[18] Hosseini S, Turhan B, Gunarathna D. A systematic

literature review and meta-analysis on cross project

defect prediction. IEEE Transactions on Software

Engineering. 2017; 45(2):111-47.

[19] Zaffar M, Hashmani MA, Savita KS. A study of

prediction models for students enrolled in

programming subjects. In 2018 4th international

conference on computer and information sciences

(ICCOINS) 2018 (pp. 1-5). IEEE.

[20] Glazier T, Garlan D. An automated approach to

management of a collection of autonomic systems. In

IEEE 4th international workshops on foundations and

applications of self* systems (FAS* W) 2019 (pp.

110-5). IEEE.

[21] KS VK. A method for predicting software reliability

using object oriented design metrics. In international

conference on intelligent computing and control

systems (ICCS) 2019 (pp. 679-82). IEEE.

[22] Miholca DL, Oneţ-Marian Z. An analysis of

aggregated coupling's suitability for software defect

prediction. In 22nd international symposium on

symbolic and numeric algorithms for scientific

computing (SYNASC) 2020 (pp. 141-8). IEEE.

[23] Azzeh M, Nassif AB, Attili IB. Predicting software

effort from use case points: a systematic review.

Science of Computer Programming. 2021; 204:1-26.

[24] Jin C. Software defect prediction model based on

distance metric learning. Soft Computing. 2021;

25(1):447-61.

[25] Colakoglu FN, Yazici A, Mishra A. Software product

quality metrics: a systematic mapping study. IEEE

Access. 2021; 9:44647-70.

[26] Feng S, Keung J, Yu X, Xiao Y, Zhang M.

Investigation on the stability of SMOTE-based

oversampling techniques in software defect prediction.

Information and Software Technology. 2021;

139:106662.

[27] Matloob F, Ghazal TM, Taleb N, Aftab S, Ahmad M,

Khan MA, et al. Software defect prediction using

ensemble learning: a systematic literature review.

IEEE Access. 2021:1-8.

[28] Meng F, Cheng W, Wang J. Semi-supervised software

defect prediction model based on tri-training. KSII

Transactions on Internet and Information Systems

(TIIS). 2021; 15(11):4028-42.

[29] Ming Q, Zhou Z, Miao L, Zhang H, Li L. Dynamic

anchor learning for arbitrary-oriented object detection.

In proceedings of the AAAI conference on artificial

intelligence 2021 (pp. 2355-63).

[30] Mustaqeem M, Saqib M. Principal component based

support vector machine (PC-SVM): a hybrid technique

for software defect detection. Cluster Computing.

2021; 24(3):2581-95.

[31] Șerban RD, Șerban M, He R, Jin H, Li Y, Li X, et al.

46-year (1973–2019) permafrost landscape changes in

the hola basin, northeast china using machine learning

and object-oriented classification. Remote Sensing.

2021; 13(10):1-19.

[32] Sun Z, Li J, Sun H, He L. CFPS: collaborative

filtering based source projects selection for cross-

project defect prediction. Applied Soft Computing.

2021; 99:1-13.

[33] Tahir A, Bennin KE, Xiao X, MacDonell SG. Does

class size matter? an in-depth assessment of the effect

of class size in software defect prediction. Empirical

Software Engineering. 2021; 26(5):1-38.

[34] Wu J, Wu Y, Niu N, Zhou M. MHCPDP: multi-source

heterogeneous cross-project defect prediction via

multi-source transfer learning and autoencoder.

Software Quality Journal. 2021; 29(2):405-30.

[35] Gu Z, Zhao Y, Gao R, Wu L. Research on the

prediction model of mine subsidence based on object-

oriented and probability integration method.

Geofluids. 2022; 2022:1-14.

[36] Guo Q, Zhang J, Guo S, Ye Z, Deng H, Hou X, et al.

Urban tree classification based on object-oriented

approach and random forest algorithm using

unmanned aerial vehicle (UAV) multispectral

imagery. Remote Sensing. 2022; 14(16):1-17.

[37] Aktaş F, Buzluca F. A Learning-based bug predicition

method for object-oriented systems. In IEEE/ACIS

17th international conference on computer and

information science (ICIS) 2018 (pp. 217-23). IEEE.

[38] Chhiba L, Abdelouahid RA, Marzak A. Predicting

maintainability of object-oriented system. In

international conference on control, automation and

diagnosis (ICCAD) 2018 (pp. 1-5). IEEE.

[39] Tripathi MK, Chaubisa D, Kumar L, Neti LB.

Prediction of quality of service parameters using

aggregate software metrics and machine learning

techniques. In 15th IEEE India council international

conference (INDICON) 2018 (pp. 1-6). IEEE.

[40] Yang X, Sun H, Sun X, Yan M, Guo Z, Fu K. Position

detection and direction prediction for arbitrary-

oriented ships via multitask rotation region

convolutional neural network. IEEE Access. 2018;

6:50839-49.

International Journal of Advanced Computer Research, Vol 12(59)

23

[41] Ha TM, Tran DH, Hanh LT, Binh NT. Experimental

study on software fault prediction using machine

learning model. In 2019 11th international conference

on knowledge and systems engineering (KSE) 2019

(pp. 1-5). IEEE.

[42] Kabir MA, Keung JW, Bennin KE, Zhang M.

Assessing the significant impact of concept drift in

software defect prediction. In 43rd annual computer

software and applications conference (COMPSAC)

2019(pp. 53-8). IEEE.

[43] Zhang Y, Zeng C, Cheng H, Wang C, Zhang L. Many

could be better than all: a novel instance-oriented

algorithm for multi-modal multi-label problem. In

international conference on multimedia and expo

(ICME) 2019 (pp. 838-43). IEEE.

[44] Afric P, Sikic L, Kurdija AS, Silic M. REPD: source

code defect prediction as anomaly detection. Journal

of Systems and Software. 2020; 168:1-22.

[45] Balogun AO, Basri S, Mahamad S, Abdulkadir SJ,

Capretz LF, Imam AA, et al. Empirical analysis of

rank aggregation-based multi-filter feature selection

methods in software defect prediction. Electronics.

2021; 10(2):1-16.

[46] Khurma RA, Alsawalqah H, Aljarah I, Elaziz MA,

Damaševičius R. An enhanced evolutionary software

defect prediction method using island moth flame

optimization. Mathematics. 2021; 9(15):1-20.

Sandeep Ganpat Kamble is doing M.

tech. in Computer Science, PCST

RGPV Bhopal (MP) and B.E. in

Information Technology RGPV

Technical University Bhopal (MP).

His area of interest are Data mining

optimization, Machine learning,

Artificial intelligence.

Email:sandeepkamble1506@gmail.com

Animesh Kumar Dubey is working as

Assistant professor with the department

of Computer Science and Engineering,

at Patel College of Science and

Technology, Bhopal, India. He has

completed his Bachelor of Engineering

(B.E.) and M.Tech. degree with

Computer Science Engineering from

Rajeev Gandhi Technical University, Bhopal (M.P.). He

has more than 15 publications in reputed, peer-reviewed

national and international journals and conferences. His

research areas are Data Mining, Optimization, Machine

Learning, Cloud Computing and Artificial Intelligence.

Email:animeshdubey123@gmail.com

