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1.Introduction 
The current trend in the programming is mainly rely 

on the proper bug detection as it is crucial in any 

software monitoring or testing system [1−5]. It also 

determines the quality of any software. It is important 

as it will improve the reliability and useful in the 

progress of the software life cycle. The main 

components which are used in the quality predictions 

are data hiding, encapsulation, inheritance and 

polymorphism. It has been considered to test the 

dynamic behaviour, usage, configuration 

assessments, and reusability checking [6−10].  

 

The quality estimation is important due to the need of 

checking and validating the programming modules 

[11, 12]. It covers all the tracks, potential software 

faults at each stage and module synchronization.  It 

can be categorized level wise as it may affect the 

system mildly or highly. The major problem with the 

system identification is the data noise, missing 

values, parameter cohesion and software bugs. It may 

affect the performance of the system. Different 

machine learning and approaches can be used for the 

estimation like K-Nearest Neighbor (KNN), naive 

Bayes (NB), decision tree (DT), logistic regression 

(LR), support vector machine (SVM), random forest 

(RF), linear regression, etc [13−17]. 

  
*Author for correspondence 

The major challenges in the quality prediction are as 

follows: 

1. Parameter estimation and its association 

2. Data arrangement and linking of missing values 

3. Feature extraction and categorization 

4. Object oriented features contribution 

 

Considering the above challenges, the main objective 

of this paper is to cluster object-oriented features 

considering different class labels and apply 

classification for the parametric analysis based on 

feature optimization. For this reason, k-means 

clustering algorithm has been applied for the 

clustering of object-oriented features and then LR 

and ant colony optimization (ACO) (LR-ACO) have 

been used for the classification. 

 

This paper is organized as follows. Review of 

literature have been explored in section 2. Method 

has been discussed in section 3. Section 4 

investigated the result and elaborated the discussion. 

Section 5 covers the summary with concluding 

remarks. 

 

2.Literature review 
This section discusses the related work in the domain 

of object-oriented programming defects. In 2017, 

Hosseini et al. [18] carried out a methodical literature 

review. To address research concerns, primary study 
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findings are combined (thematic, meta-analysis). 

They discovered 30 primary studies that met quality 

standards. The choice of metrics affects performance 

measures, with the exception of precision. The most 

typical measurements are recall, precision, f-measure, 

and AUC. In cross project defect prediction (CPDP), 

models based on decision trees and nearest 

neighbours typically perform better than models 

based on the widely used NB. In 2018, Zaffar et al. 

[19] concentrated on the crucial characteristics of 

students taking programming classes that were 

employed in some of the earlier research. They also 

highlighted various classification prediction 

techniques to forecast students' achievement in 

programming courses. They took action to raise 

educational standards, and all those involved in 

education benefited from their efforts. In 2019, 

Glazier and Garlan [20] suggested a method that 

allowed the development of a meta-manager, a 

higher-level autonomic system that neither directly 

coordinates the operations of the sub-autonomic 

managers nor subsumes the control functions. 

Instead, they packed and abstract each subsystem's 

behaviour into a parameterized adaptation policy that 

the meta-manager can modify to fine-tune the 

subsystem adaption's adaptive behaviour. Further, 

they provided a method for meta-managing a set of 

autonomous subsystems that preserves local 

autonomy while allowing for the synthesis of 

stochastic game strategies to increase global 

aggregate utility. In 2019, KS [21] forecast software 

reliability by modelling the relationship between 

object-oriented design metrics and object-oriented 

programme dependability. The system is made up of 

modules for the classifier, testing, and reliability 

computation. The system is made up of classifier, 

metrics creation, testing, and reliability calculation 

modules. In 2020, Miholca and Oneţ-marian [22] 

offered three software metrics suites derived from 

conceptual and structural connection, and they 

examined how various combinations of these metrics 

affect how well software defect prediction model’s 

function. They evaluated the relative performance of 

the models while evaluating the conceptual 

connection utilising features extracted with LSI 

versus Doc2Vec in combination with Cosine versus 

Euclidean similarity. The datasets used were ant 1.7, 

jEdit 3.2, 4.0, 4.1, 4.2, 4.3 and tomcat 6.0 and the 

method used were first, COMET and Promise. The 

applied method logistic regression, KNN and 

artificial neural network were applied on the used 

dataset. The logistic regression achieved the highest 

value of 0.917 in first method of jEdit 4.3 dataset 

whereas KNN achieved the highest value of 0.948 in 

COMET method of jEdit 4.3 and ANN achieved the 

highest value of 0.919 in first method of jEdit 3.2 

dataset. In 2021, Azzeh et al. [23] performed review 

to categories, use case points (UCP) effort estimation 

studies according to four factors: contribution kind, 

research methodology, dataset type, and UCP 

methodologies. To examine these works from a 

variety of angles, including estimate accuracy, a 

supportive estimation environment, and the effect of 

combining approaches on UCP accuracy. The UCP 

research' main methodologies were enhancement and 

construction procedures. The development of 

estimate tools, particularly intelligent systems that 

convert use case descriptions to UCP metrics, 

received little attention. Additionally, they looked 

into a few journals to assess the range of prospective 

sources for estimation studies and awareness of 

published results. In 2021, Jin [24] suggested a novel 

distance metric learning approach that relies on cost 

sensitive learning to lessen the effect of sample class 

imbalance. This approach is then applied to the large 

margin distribution machine (LDM) to replace the 

conventional kernel function. Further, they proposed 

the improved cost sensitive (CS) LDM. The 

improved CSLDM (CS-ILDM) was applied to five 

publicly available datasets gathered from NASA 

metric data repository. In addition to having 

acceptable predictive performance, CS-ILDM also 

has the lowest cost per incorrect prediction. In 2021, 

Colakoglu et al. [25] examined the current topics of 

study and developments on this subject that have 

appeared in the literature during the past ten years. 

On 70 articles and conference papers that were 

published between 2009 and 2019 on software 

product quality metrics (SPQM) as indicated in their 

titles and abstracts, a systematic mapping analysis 

was conducted. The outcome is presented via 

diagrams, explanatory text, and the mind mapping 

technique. The results contain a trend map from 2009 

to 2019, information about this field and measuring 

tools, concerns identified as having room for 

advancement, and consistency between conference 

papers, journals, and internationally recognized 

quality models. In 2021, Feng et al. [26] used the 

stable Synthetic Minority Oversampling Technique 

(SMOTE) to reduce the randomness. They applied 

the DT, KNN, RF and SVM as the four classifiers on 

26 publicly available datasets from PROMISE 

repository.  In terms of AUC, balance, and MCC, 

respectively, the difference between the worst and 

greatest performances of SMOTE-based 

oversampling approaches can reach up to 23.3%, 

32.6%, and 204.2%. In 2021, Matloob et al. [27] 

offered concise details on the most recent trends and 
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developments in ensemble learning for predicting 

software defects and established a foundation for 

further advancements and additional reviews. They 

discovered that the random forest, boosting, and 

bagging ensemble approaches are often used by 

researchers. The use of stacking, voting, and Extra 

Trees is less common. They discovered that many 

studies have suggested a number of interesting 

frameworks that use ensemble learning techniques, 

including EMKCA, SMOTE-Ensemble, MKEL, 

SDAEsTSE, TLEL, and LRCR. In 2021, Meng et al. 

[28] suggested a semi-supervised software defect 

prediction model which combined the feature 

normalisation, over-sampling technology, and a Tri-

training process. In order to remove the impact of 

excessively high or excessively low feature values on 

the model's classification performance, the feature 

data are first smoothed using the feature 

normalisation approach. Second, the uneven 

categorization of labelled samples is resolved by 

expanding and sampling the data using the 

oversampling method. The Tri-training approach then 

creates a fault prediction model using machine 

learning on the training samples. They used the CM1, 

PC1, KC1 and KC2 as the dataset from Promise 

library. They used the Naïve Bayes, Decision Tree, 

AdaBoost, S4VM+ and Tri_SSDPM as the 

classifiers. The accuracy of 0.874, precision of 0.886, 

recall of 0.828 and F-measure of 0.855 was obtained. 

In 2021 Ming et al. [29] put forth the dynamic anchor 

learning (DAL) approach, which makes use of the 

newly established matching degree to thoroughly 

assess the anchors' capability for localization and 

performs a quicker label assignment process. With 

just a few horizontal preset anchors, they can now 

recognise arbitrary-oriented objects more effectively 

because of the newly added DAL. Results from 

experiments on the three remote sensing datasets 

HRSC2016, DOTA, and UCAS-AOD as well as the 

scene text dataset ICDAR 2015 demonstrated that 

their strategy significantly outperformed the baseline 

model. They achieved the mAP/F score of 81.3, 88.3 

and 76.1 in ICDAR 2013, NWPU VHR-10 and VOC 

2007. In 2021, Mustaqeem and Saqib [30] proposed a 

hybrid machine learning strategy combining Principal 

component analysis (PCA) and SVM. In order to 

carry out their investigation, they used PROMISE 

dataset of 344 observations of CM1, 2109 

observations of KC1 dataset from the NASA 

directory. The dataset was then divided into training 

and testing datasets of 104 observation from CM1 

dataset, and 633 observations from KC1 dataset. 

Additionally, they used the GridSearchCV technique 

to fine-tune the hyperparameters. They discovered 

that the proposed hybrid model has higher accuracy 

of 95.2% and 86.6% in CM1 and KC1 datasets. In 

Serban et al. [31] used the Landsat library of satellite 

pictures from 1973 to 2019 to evaluate the LUCC. 

Combining the Support Vector Machine (SVM) 

technique with object-based image analysis (OBIA), 

a theme change detection analysis was carried out. 

For the years 1973, 1986, 2000, and 2019, four types 

of LUCC (forest, grass, water, and anthropic) were 

retrieved with an overall accuracy of >90%. In 2021, 

Sun et al. [32] collaborative filtering-based source 

projects selection (CFPS) method, which is based on 

collaborative filtering. They applied C4.5, LR, NB, 

RF and sequential minimal optimization as the 

machine learning algorithms. The average MAP of 

0.6518 and average MRR of 0.8688 was received. In 

2021, Tahir et al. [33] used a regression-based 

approach. They were able to determine the influence 

based on the defects. In 2021, Wu et al. [34] 

proposed the multi-source heterogeneous cross-

project defect prediction (MHCPDP) technique. It 

has been used for the detection of unrelated features. 

In 2022, Gu et al. [35] established an object-oriented 

probability integration prediction model framework. 

They introduced an object-oriented method coupled 

with the traditional probability integration method 

and then created the framework. The primary 

variables influencing mining subsidence, namely the 

subsidence coefficient, thickness, and dip angle, were 

subjected to sensitivity analysis. Engineering 

scenarios are used to test the predictability of the 

model, and the primary mining subsidence impacting 

elements are also examined. The outcomes 

demonstrated that the projected outcomes of the 

model are essentially compatible with the situation. 

In 2022, Guo et al. [36] combined an object-oriented 

methodology and a random forest algorithm to 

provide an effective and practical method for 

identifying urban trees. Finally, utilising the RF, 

SVM, and KNN classifiers, the categorization of 

urban trees was carried out based on the nine 

methods. The findings demonstrate that the RF 

classifier outperforms SVM and KNN. 

 

The analysis of some of the selected paper is shown 

in Table 1. 
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Table 1 Analysis of the selected papers 
S. No. Author Dataset Method Approach Result Limitation 

1 Aktaş and 

Buzluca 

(2018) 
[37] 

5,973 Mylyn 

task sessions 

from Eclipse 
Bugzilla were 

used in total. 

They identified the most 

pertinent subset of 

measurements, they 
employed the PCA and 

correlation-based feature 

selection (CFS) 
methodologies. Then 

lastly, they applied 

Random Forest to find 
error prone classes.  

They suggested a 

method for creating 

machine learning-based 
models for predicting 

bugs. They address 

issues with labelling and 
feature selection. 

Values for recall, 

precision, and f-

measure are 
0.725, 0.828, and 

0.773, 

respectively. 

Each project has its 

own personality, 

hence multiple 
models should be 

developed for 

various software 
systems. 

2 Chhiba et al.  

(2018) 
[38] 

9 and 7 java 

software 
development 

projects. 

They created the 

"Maintainability 
Estimation Model," a 

multivariate linear model 

that assesses the 
maintainability in terms of 

its self-description, 

simplicity, and modularity. 

According to their self-

description, simplicity, 
and modularity, the 

maintainability is 

estimated by the 
maintainability model. 

While R.C. Martin's 

measures are used to 
measure simplicity and 

modularity, 

R2 achieved for 

modularity 
model is 0.862 

and for similarity 

model is 0.958 

More advanced 

maintainability 
assessment models 

can be created by 

conducting a 
broader study with 

a range of industrial 

projects in various 
fields. 

3 Tripathi et 

al.  
(2018) 

[39] 

QWS Dataset They suggested creating 

prediction models based on 
16 aggregate measures and 

demonstrated that these 

aggregate measures 
differed significantly from 

one another. Six feature 
selection methods are used 

to choose the optimum 

feature subset, and they 
used Extreme Learning 

Machines (ELM) with 

various kernels to create 
prediction models. 

By utilising CK and 

object-oriented metrics 
of the underlying Java 

files, they carried out an 

empirical investigation 
on the prediction of 12 

QoS factors for online 
services. For each 

WSDL, they combined 

CK and OO scores using 
16 different 

measurements. To 

identify important 
characteristics, six 

feature ranking and 

extraction algorithms are 
applied. 

The ELM with 

RBF kernel has a 
mean and 

median MMRE 

of 0.369 and 
0.346, 

respectively. 

------- 

4 Yang et al.  

(2018) 

[40] 

Satellite 

remote 

sensing 
ship image 

dataset 

(SRSS) 

They proposed an 

innovative multitask 

rotational area 
convolutional neural 

network-based detection 

approach. 

They used the rotating 

bounding box 

regression, adaptive 
region of interest (ROI) 

align, prow direction 

prediction, and rotational 
non maximum 

suppression make up the 

majority of this model 
(R-NMS). 

They achieved 

recall of 85.2%, 

precision of 
84.5% and F1-

score of 84.9%.  

Objects with 

significant levels of 

overlap are 
constrained. 

5 Ha et al.  

(2019) 
[41] 

They used 

JM1, PC4, 
KC2, MC1, 

KC1, PC3, 

CM1, MW1, 

PC1, Class, 

MC2, KC3 

and PC2 
datasets from 

PROMISE 

repository.  

They applied LR, KNN, 

DT, RF, SVM and 
multilayer perceptron 

For defect prediction, 

they used object-
oriented metrics and 

other machine learning 

approaches. The 

PROMISE datasets were 

used for their 

experimental 
investigation, which 

focused on seven well-

known machine learning 
methods for defect 

prediction. According to 

the results, Multilayer 
Perceptron performs best 

for method-level 

datasets, whereas 
Support Vector Machine 

The highest F1 

score, AUC and 
accuracy of 0.59, 

0.91 and 0.91 

was achieved in 

Multilayer 

Perceptron.  

There is a need to 

study classification 
approaches to 

address the problem 

of dataset 

imbalance in fault 

prediction. 
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S. No. Author Dataset Method Approach Result Limitation 

works best for class-
level datasets. 

6 Kabir et al. 

(2019) 
[42] 

jm1 and prop 

defected 
datasets.  

They utilised the drift 

detection method (DDM) 
strategy and used the chi-

square test with Yates 

continuity adjustment to 
assess its statistical 

significance. They applied 

Naïve Bayes and Decision 
Tree as the classifiers. 

They used the widely 

acceptable and well-
known DDM drift 

detection approach to 

look for concept drift in 
the jm1 and prop 

datasets. 

The p-value 

received for 
3000 historical 

datasets from NB 

and DT are 0.027 
and 0.025.  

It is necessary to 

run an experiment 
using Fishers Exact 

test on small 

datasets of software 
defects to track 

changes in data 

distributions that 
affect the accuracy 

of the predictions. 

7 Zhang et al. 
(2019) 

[43] 

Two publicly 
accessible 

datasets, such 

as Emotions 
and Scene, are 

modified, 

along with one 
real-world 

Herbs dataset. 

For the multi-modal and 
multi-label (MMML) 

problem, they introduced a 

novel instance-oriented 
multi-modal classifier 

chains (MCC) technique 

that can produce 
convincing predictions 

with partial modalities. 

They suggested an MCC 
model for the MMML 

problem that is inspired 

by adaptive decision 
approaches, taking into 

account both multi-label 

learning and feature 
extraction. 

They obtained 
MCC of 

2.520±0.182 for 

Herbs, 
1.519±0.313 for 

emotions and 

2.109±0.324 for 
scene dataset.  

It is time 
consuming.  

8 Afric et al. 

(2020) 
[44] 

They used the 

PROMISE 
dataset 

repository's 

CM1, JM1, 
KC1, KC2, 

and PC1 
datasets. 

They applied 

reconstruction error 
probability distribution 

(REPD) model, which can 

deal with individual and 
group abnormalities. 

Further, they compared it 
to five models: decision 

tree, logistic regression, k-

nearest neighbours, and 
hybrid SMOTE-Ensemble 

on five different traditional 

code feature datasets.  

For the purpose of 

predicting source code 
defects, they presented 

the REPD model. They 

used the autoencoder 
neural network 

architecture, which 
showed promising 

results in anomaly 

detection tasks, to 
identify flaws in 

software artefacts. 

They 

demonstrate that 
their model 

generates 

noticeably 
superior 

outcomes, 
raising the F1-

score by up to 

7.12%. 

It is necessary to 

look at other 
alternative anomaly 

detection methods 

that can be useful 
for the subject of 

predicting source 
code defects. 

9 Balogun et 

al. 

(2021) 

[45] 

Different 

datasets 

selected from 

NASA were 
like: CM1, 

KC1, KC2, 

KC3, MW1, 
PC1, PC3, 

PC4 and PC5. 

They used DT and NB 

models. 

It has been used for 

software fault prediction. 

The average 

accuracy 

achieved from 

Naïve Bayes and 
Decision Trees 

was 76.33 and 

83.01.  

It is worthwhile to 

investigate the 

impact of threshold 

values on the 
efficacies of FFS. 

10 Khurma et 
al. 

(2021) 

[46] 

21 publically 
available 

datasets were 

used.  

They proposed a binary 
variant of Moth flame 

optimization (MFO) 

algorithm by using Island 
BMFO. Further, it is 

compared by SVM, NB 

and KNN. 

In order to improve the 
BMFO and address the 

feature selection issue in 

the context of software 
defect prediction. 

With an average 
G-mean of 78%, 

IsBMFO 

followed by 
SVM 

classification is 

the best model 
for the SDP 

problem when 

compared to 
other models. 

There is need of 
island-based 

investigation. 

 

3.Methods 
In this paper, k-means clustering was used for the 

object-oriented clustering features and then LR and 

ACO have been used for the classification.  The 

phases are as follows: 

1. Data pre-processing: For the experimentation 

object-oriented programming have been 

considered. We have considered the code of C++ 

and java programming modules. 

2. Data clustering: K-means clustering was used for 

the object-oriented clustering features. For the 

comparison of the observed and expected results, 

chi-square analysis has been used. 

K-means algorithm 

Step 1: Initialize the number of clusters. 

Step 2: Assign, K random points. Categorize 

according to the data point. 

Step 3: Centroid computation. 
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Step 4: The above steps will be iterated till the 

variation is minimized or nil. 

4.1 Calculate the Euclidean distance for calculating 

the distance between the data points. 

4.2 Allocate the data point to the nearest centroid. 

4.3 Finalize the data points. 

 

3. Classification:Combination of LR and ACO 

algorithms have been used for the classification. 

 

Logistic regression: 
Step 1: Assignments of linear weight. Parameter 

initialization has been performed in this step. 

Step 2: Predict the probability value based on 

independent features for the dependent variable. 

Step 3: Error margin calculated based on the 

predicted value. 

Step 4: Final estimation on the same region. 

Step 5: Split the data for training and testing phase. 

Step 6: Final estimated value 

ACO Algorithm: 

Step 1: Population initialization (Input the classified 

LR values). 

Step 2: Based on the categorized faults, initialize the 

pheromone values. 

Step 3: The above step has been repeated till the 

weight assignment for each factor. 

Step 4: Construct the optimized solution. 

Step 5: Update the complete trails and stop the 

iterations. 

The working process is depicted clearly in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Working process of the complete approach 

 

4. Results and discussion 
In this section results have been discussed and 

investigated. The performance metrics considered 

here are F-score (FS), ratio (defect odd) (Rd) and 

deviation margin (DM).  It has been calculated as 

follows: 

FS= (2 ×P ×R) / (P+R)   (1) 

Rd= 2×R (1-P) / (1-P×R)   (2) 

DM= ((1-P) ×k-(1-R) ×k)   (3) 

Here precision is denoted by P, recall is indicated by 

R. k value is 2. 

 

The result for FS based on object-oriented parameters 

like class module, object module, inheritance module 

and polymorphism along with the Rd and deviation 

margin have been discussed here. Figure 2 shows the 

comparison of FS value considering different object-

oriented modules (set-1). Figure 3 shows the 

Start 

Data preprocessing 

K-Means and Chi-square test 

Threshold 
Discard 

LR and ACO 

Performance comparison 
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comparison of FS value considering different object-

oriented modules (set-2). Figure 4 shows the 

comparison of FS value considering different object-

oriented modules (set-3). Figure 5 shows the 

comparison of Rd value considering different object-

oriented modules (set-1). Figure 6 shows the 

comparison of Rd value considering different object-

oriented modules (set-2). Figure 7 shows the 

comparison of Rd value considering different object-

oriented modules (set-3). Figure 8 shows the 

comparison of deviation margin considering different 

object-oriented modules (set-1). Figure 9 shows the 

comparison of deviation margin considering different 

object-oriented modules (set-2). Figure 10 shows the 

comparison of deviation margin considering different 

object-oriented modules (set-3). The results shows 

that the performance measures are capable in the 

detection of deviation margin in different object-

oriented modules. The size of the modules is varied 

between 10 KB to 10 MB. 
 

 
Figure 2 Comparison of FS value considering different object-oriented modules (set-1) 

 

 
Figure 3 Comparison of FS value considering different object-oriented modules (set-2) 
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Figure 4 Comparison of FS value considering different object-oriented modules (set-3) 

 

 
Figure 5 Comparison of Rd value considering different object-oriented modules (set-1) 

 

 
Figure 6 Comparison of Rd value considering different object-oriented modules (set-2) 
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Figure 7 Comparison of Rd value considering different object-oriented modules (set-3) 

 

 
Figure 8 Comparison of deviation margin considering different object-oriented modules (set-1) 

 

 
Figure 9 Comparison of deviation margin considering different object-oriented modules (set-2) 
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Figure 10 Comparison of deviation margin considering different object-oriented modules (set-3) 

 

5. Conclusion 
In this paper, k-means clustering algorithm has been 

applied for the clustering of object-oriented features 

along LR and ACO for the classification.  Data pre-

processing, data clustering and classification have 

been performed for the software quality estimation 

considering object-oriented parameters. The 

performance metrics considered are FS, Rd and DM. 

The size of the modules is random and variable. The 

modules belong to C++ and java codes considering 

object-oriented parameters. The results indicate that 

the approach is capable in calculating the 

performance measure with less error margin. 
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