
International Journal of Advanced Computer Research, Vol 10(48)

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

http://dx.doi.org/10.19101/IJACR.2020.1048023

116

Implementation and performance analysis of dynamic partitioning of graphs

in Apache Spark

Geetha J
*
, Jayalakshmi D S and Harshit N G

Department of Computer Science and Engineering, MSRIT, Bangalore, India

Received: 11-February-2020; Revised: 10-May-2020; Accepted: 20-May-2020

©2020 Geetha J et al. This is an open access article distributed under the Creative Commons Attribution (CC BY) License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1.Introduction
In recent years data collection, management and

usage have grown to an extremely large extent.

Almost all the major fields like information

technology, medical science, transport, retail are

dependent on data analysis for growth. All necessary

technologies needed for data gathering are getting

developed exponentially. All the devices from high-

end aeroplanes to household equipment are becoming

smarter and collecting huge data every second. Now

the biggest challenge is to analyze this huge data and

retrieving useful information which will help in the

major decision-making process.

One of the most discussed problems related to the

processing of graph data is partitioned. Balanced

partitioning of the graph is a popularly known NP-

complete problem that has a large set of applications.

*Author for correspondence

One of these applications is the solution to a major

problem in cloud infrastructure i.e., optimal and

efficient storage of large sets of data which are

structured as a graph. At the root level, graph

partitioning is nothing but distributing all the nodes

in a partition in such a way that maximum of them

are adjacent (with a maximum number of shared

edges). Hence the definition of graph partitioning is –

dividing the graph into a well-defined number of

partitions, in such a way that excludes partitions have

a very minimal number of edges. One of its

variations is the uniform or balanced graph

partitioning, where it is also a priority to place an

equal number of nodes in each partitioned

component. A proper partitioning can be used to

reduce the cost of communication, load balancing or

to recognize densely formed clusters [1, 2].

Apache Spark is the trending technology, which has

gained immense popularity due to its high-

performance computing in case of big data. In Spark,

data is stored in persistent data structures called

Resilient Distributed Datasets (RDDs). These RDDs

Research Article

Abstract
In recent years data is growing continuously at an exponential rate. Even in its processed form, large data is difficult to

understand and analyze. One of the best approaches to handle large data is to represent it in the graphic format. These

graphs can be used for data analysis, processing and decision making. Because of the volume of data is huge, the graphs

generated by them are also huge making it difficult to process. Thus, the modular approach of studying them by

partitioning them is much more effective. There are several inbuilt partitioning techniques available in Apache Spark

which can be extended to graph partitioning according to the user needs. Graph partitioning is an active area of research

with considerable activity with an aim towards increasing the accuracy and speed of the algorithms. This research work

aims to build a high- performance graph partitioning technique for Apache Spark which makes it faster, scalable and

efficient. In this paper, a custom algorithm that can divide the graph into an optimal number of partitions dynamically in

Apache Spark is proposed. A novel method to calculate the distance between the nodes and similarity indexes to partition

the data is introduced. The optimal number of partitions is decided to use similarity indexes, which are calculated using

the concept of Laplacian matrix and Eigenvalues. The proposed algorithm is implemented and its performance is

compared to the existing algorithms in Apache Spark. The results indicate that the algorithm partitions graphs which

have a huge number of vertices with considerable efficiency and computing cost.

Keywords
Partition, Graphs, RDD, Clustering, Spark.

International Journal of Advanced Computer Research, Vol 10(48)

117

can be partitioned and stored in different

computational nodes of the system. The RDDs in

these nodes are processed in parallel and later the

results are aggregated. This partitioning of RDDs

increases the performance and speed of Spark to a

great extent. There are several inbuilt data

partitioning techniques already available in Spark.

These methods are used for data partitioning, the

same methods can be extended to graph partitioning

as well. But the problem is that these methods give

good accuracy with only a certain kind and a certain

amount of the data. A small variation in the amount

of data may lead to a large variation in the accuracy

of these algorithms. Also, these techniques divide the

data statically into a predefined number of partitions.

However, if the data are dynamically changing, then

these algorithms fail to adapt [3, 4].

In this project along with the implementation of

existing methods, a new custom dynamic partitioning

method is developed for the Apache Spark. This

dynamic technique exploits the relationship between

the nodes to decide the partition. Closely related

nodes are placed together. Nodes set with very little

interaction (number of edges) are separated into

different partitions. These partitions are placed in

different RDDs. These individual RDDs are

processed concurrently in different nodes. This

parallel data processing increases the efficiency of

Spark leading to its high-performance computing [5,

6].

1.1Problem statement

In any of the distributed processing systems,

partitioning determines the degree of parallelism and

impacts the performance of distributed applications

to a large extent. The amount of data handled by each

node should be balanced. Most of the cases, data will

be divided blindly without any proper logic. This

further disturbs the load-balance and performance of

the application. Along with this, partitioning should

have the capacity to group closely related nodes.

Also, the partitioning technique should be dynamic to

intelligently decide the number of partitions in the

given data [7].

Existing algorithms in Apache Spark provide good

performance to only a certain amount of data.

However, this scale is not uniform as the data grows

in size. Hence there is a need to develop a custom

dynamic partitioning method for the Apache Spark

which is consistent, fault-tolerant and scalable. The

custom technique should also give stable accuracy

and speed compared to existing partitioning methods.

Partitions generated by this algorithm are stored as

RDDs which further processed at different nodes of

the system in parallel. This will increase the

efficiency and speed of data processing in Apache

Spark.

1.2Objectives

The objectives are as follows:

 Implement the existing partitioning methods in

Apache Spark by extending it to graph data and

analyze their performance.

 Implement the custom dynamic partitioning

method for Apache Spark to overcome the

problems in existing methods.

 Custom partitioning should have the capability to

work on a huge amount of data with consistent

accuracy and speed.

2.Literature survey
Balanced partitioning of the graph is a popularly

known NP-complete problem that has a large set of

applications. One of these applications is the solution

to a major problem in cloud infrastructure i.e.,

optimal and efficient storage of large sets of data

which are structured as a graph. There are several

ways to partition the data (graphs in this case).

Commonly used are static partitioning methods.

However, if the data is continually

changing/updating, then these algorithms fail to

adapt. Extensive research has gone on to dynamically

partition the data into the required number of

partitions. Dynamic techniques exploit the

relationship between the nodes to decide the partition

[7]. Closely related nodes are placed together. Node

sets with very little interaction (number of edges) are

separated into different partitions. There are several

existing graph partitioning techniques. Some of these

techniques are explained in the following sections.

2.1BFS Partitioning

Breadth first search (BFS) is a commonly known

method which can also be used in graph partitioning.

BFS algorithm traverses the graph breadth-wise

(level-by-level) and marks each vertex with the level

in which it was visited. After the complete traversal

of the input graph, the set of vertices of the graph is

divided into two partitions V1 and V2 based on a

predetermined threshold L. Then all the vertices

falling under level which is less than or equal to L are

categorized in the set V1. All the remaining vertices

which are having a level greater than L are placed in

the set V2. L is chosen in such a way that |V1| is

always close to |V2|. If there is a need to balance the

graph, then | V1| should be equal to | V212|. Figure 1

Geetha J et al.

118

shows the working of BFS partitioning. First all the

nodes will be red representing unpartitioned graph.

After the first iteration of BFS, nodes falling in the

lower level of threshold are grouped in V1 represented

by green color, remaining under V2 as red nodes. In

the third step partitions are balanced by placing few

more nodes in V1 which are comparatively close to

lower threshold [8].

Figure 1 BFS partitioning

2.2Kernighan-Lin algorithm

The Kernighan-Lin algorithm (also popularly known

as KL algorithm) is one of the well-known graph

partitioning algorithms which is takes a heuristic

approach. Consider simple graph represented as G =

(V, E, edge-weight function c). In the simplest setting,

the KL algorithm takes edge-weight function c of all

edges and creates initial bi-partition (V1, V2) of the set

V. Further, it produces a new partition (V1
ˊ
, V2

ˊ
) in

such a way that | V1
ˊ
 | = | V2

ˊ
| = n by rearranging the

vertices in sets. This re-arranged partition will be

such that the total cost of the obtained partition is

lower than the cost of the original partition. In this

algorithm cost function is the cut count which is

number of the nodes from which input node has to

disconnected to move into new partition. Figure 2

displays the working of the Kernighan-Lin algorithm.

First graph is the initial bipartition with nodes D, E, F

and C one set. After few iteration nodes are

rearranged and final result has B, C, F and H in one

partition and remaining in others [9].

Figure 2 Kernighan-lin graph partitioning

2.3METIS

One of the popular software packages for irregular

graph partitioning is METIS. METIS is also used for

partitioning large meshes and also in computing fill-

reducing orderings of sparse matrices. The algorithms

in this package are based on multi-level graphs

partitioning. Graph partitioning algorithms which are

discussed so far computes partition of a graph by

carrying out operations directly on the original graph.

These kinds of algorithms are very slow and produce

partitions which are of poor quality. On the other

hand, multi-level graph partitioning algorithms

follow a completely different approach. These

algorithms; first reduce the size of the graph by

collapsing vertices and edges, thus obtaining smaller

graphs. Then algorithm reduce the size and simplify

it to construct a partition for the actual large graph.

METIS uses the divide and conquer approach to

successively reduce the size of the graph. METIS

utilizes in-built algorithms that make it easier to find

a high-quality partition. During refinement, METIS

focuses mainly on the partitions of the graph that is

really close to the boundary. These well-tuned

algorithms help METIS package to quickly produce

high quality partitions for large graphs.

METIS supplies two programs PMetis and KMetis

for partitioning the graph which is complex and large.

1. PMetis - based on multilevel recursive bisection

2. KMetis - based on multilevel k-way partitioning.

Both of these programs are able to produce partitions

of high quality. However, based on the application,

one programmer might prefer one over the other.

Generally, KMetis is preferred when it is necessary to

partition graphs into more than 8 partitions. In such

cases, KMetis is notably faster than PMetis. On the

other hand, PMetis is preferred for partitioning a

graph into a smaller number of partitions [10].

2.4JA-BE-JA algorithm

JA-BE-JA is a distributed algorithmic solution for

reconciling the balanced k-way problem. In JA-BE-

JA algorithm each node of the graph is practically a

virtual processing unit, containing the information

about its neighborhood. Each node of the graph

acquires knowledge about the group of nodes by

local interaction. In the beginning, each node selects

a random partition. Gradually nodes swap their

partitions with each other to increase the size of the

group which they belong to. This algorithm aims at

dealing with large distributed graphs. It makes good

use of principle of locality. In some cases, it

outperforms the results achieved by METIS. Given a

graph which is colored, the idea behind this algorithm

is to drive the system into a lower energy state by

applying the local heuristics. All the nodes in execute

this local heuristic in parallel. Each node tries to

International Journal of Advanced Computer Research, Vol 10(48)

119

swap the color with the neighbour which is having

the most dominant color, by the following strategy:

1. Select another node from its neighbours or from a

random sample

2. Consider the utility of the color swapping. The two

nodes swap their colors if it decreases the energy

else, they keep their colors. Thus, the distribution of

colors is maintained during the whole process as

nodes just exchange colors. Therefore, if the color

uniformly assigned at the start, then final result at the

end is expected to have balanced partitions [11].

3. Proposed methodology
The various graph partitioning methods like BFS

partitioning, Kernighan-Lin Algorithm, Balanced k-

way partitioning, METIS, and the JA-BE-JA

algorithms provide the required number of partitions

and hence play a major role in increasing the

parallelism. Finally, based on the study of these

existing algorithms, a new custom partitioning

method is developed.

3.1Deciding number of partitions on graph RDDs
The data stored in excel files need to be converted to

graph format. First, this data is to be converted to

Spark RDDs. The Jupyter notebook has an in-built

Spark context. RDDs can be created using Parse

function available in python. This RDDs have to be

mapped and remapped to form well-formed RDDs.

Data is split using split () and map () functions. Once

RDDs are well formed with nodes and edges, Graph

RDDs needs to be generated. The layout is specified

using draw_networkx_nodes function. This function

has parameters like network graph, node list, node

color, node size, etc. Based on the user specification

2D graph will be generated. This graph acts as an

initial, un-partitioned, input graph showing all nodes

in a single color.

The graph RDDs generated need to be partitioned.

Deciding the optimal number of partitions is the core

functionality of the system. Earlier data-partitioning

methods statically get the value from the user and

divide accordingly. This method is pretty straight

forward in the case of small datasets. However, in the

case of data set having the range in millions of nodes,

static methods are of not much use. The function

described here makes use of mathematical concepts,

statistical analysis to identify the optimal number of

groups and display the same.
3.1.1Finding the laplacian matrix

Laplacian matrix which is also known as the

admittance matrix is the graph which represented in a

matrix format. This is one of the most useful

properties of the graph. It provides functionalities

like finding the number of spanning trees, obtaining

central measure, etc. It is also used in several

machine learning applications. However, the main

use of Laplacian matrix is to identify the Eigen value

and Eigen vectors.

The following is the mathematical formula for

finding the Laplacian matrix.

L = D – A (1)

Where A is the adjacency matrix and D is the degree

matrix.
3.1.2Eigen value and eigen vector

Eigen value and Eigen vectors are the most used

concepts when it comes to graph theory. They signify

the most essential properties of the graph. The large

values yielded by calculation of Eigen values

signifies which set of nodes are strongly connected.

Based on these similarity indexes, the number of

partitions is decided.

Based on the Eigen values a new Spark graph RDD is

created (RG_mbd) which is used as an input graph to

the algorithms. These graph RDDs are useful because

of their fault tolerance nature. In the case of the

crash, these graph RDDs can be easily recreated

using linages. This improves the reliability of the

code.

Algorithm: Dynamically deciding number of

partitions

1.Create RDDs using the dataset stored in excel

format.

2.Map the RDDs accordingly by split and lambda

functions.

3.Form node and edge list.

4.Create graph RDDs using node and edge list.

5.Display the un-partitioned graph.

6.Convert graph RDDs to matrix format.

7.Find the Laplacian matrix for input graph RDD.

8.Compute Eigen values and Eigen vector using the

Laplacian matrix.

9.Create a new graph RDD using Eigen values and

Eigen vector.

10.Based on Eigen value buckets, decide the number

of partitions.

11.Output the number of optimal partitions.

3.2Existing algorithm implementation

There are several existing graph partitioning methods

in place. Among them, 3 most important algorithms

are K-Means Clustering, Spectral Clustering and

Agglomerative Clustering.

Geetha J et al.

120

3.2.1K-means clustering

K-Means Clustering is one of the most commonly

used unsupervised learning techniques that can be

utilized to resolves the partitioning problem. This

technique follows a nominal and simple way to

divide a data collection into a specified number of

partitions (assume k partitions). The idea is to

identify K centroids, one for every partition. The

result mostly depends on the identification of these

centroids. Changing these centroids may result in

drastic changes in the final result. Hence it is always

better to choose them in such a way that they are far

away from one another. For finding out the

proximity, Euclidian distance is used. Each point

belonging to the input data collection is connected to

its nearest centroid. Hence all the data points near to

a particular centroid are grouped. When all the data

points are grouped, the first iteration is over. In the

next iteration, centroids are recalculated and grouping

is done again. This process is repeated until there are

no more changes in the centroid and they have

converged to a defined number of clusters [12]. The

algorithm is as follows:

Algorithm: K-Means Clustering

1. Import sklearn libraries.

2. Initialize K indexes, called centroid, randomly or

decisively (as per the code needs).

3. Classify every item to its proximate centroid based

on the Euclidian distance and update the

association resulting in groups.

4. This step is repeated until the convergence is

achieved and a given number of clusters are

formed.

5. Fit this method with graph RDD and decided the

number of partitions. This will return the labels.

6. Use the labels to partition and color the graph

nodes.

7. Output the partitioned graph.

If precomputed centroids are provided then steps 2

and 3 can be circumvented and reduce the

convergence time to a single iteration [8].
3.2.2Spectral clustering

The biggest problem with the K-Means Clustering is

that it depends on the selection of centroid. The

algorithm’s accuracy and convergence depend on the

metrics used for the selection of centroids. This

mostly results in local optimal problem. Spectral

Clustering solves this problem for us. Spectral

Clustering either uses the Euclidian distance of the

K-nearest neighbour strategy to form the cluster. In

this case, Eigen values are used as distance metric

and indexes are pushed to low dimension space for

forming partitions. The algorithm is as follows:

Algorithm: Spectral Clustering

1. Import sklearn libraries.

2. Find out the Eigen values and Eigen vector. Pass it

down to the algorithm.

3. Least Eigen value indicates the most proximity. It

is used to associate a node with a chosen index.

4. This is applied to each data point and the

partitions are formed.

5. Fit this method with graph RDD and number of

partitions. Labels will be returned.

6. Use the labels to partition and color the graph

nodes.

7. Output the partitioned graph.

Precomputed Eigen values, Eigen vector and indexes

are provided to Spectral Clustering as the inputs. The

graph is partitioned with a given number of groups

with nodes belonging to each cluster designated with

a particular color.
3.2.3Agglomerative clustering

Hierarchical clustering is one of the most prominent

techniques which gives promising results. Groups

tend to maintain an inherent hierarchy. In hierarchical

clustering according to the level, splitting or combing

takes place. There are 2 types of hierarchical

clustering- Agglomerative and Divisive Clustering.

In this project, Agglomerative Clustering is used. The

Agglomerative Clustering is a bottom-up approach

wherein the Divisive Clustering technique is a top-

down approach. In Agglomerative Clustering, in the

beginning, each data node is considered as a

partition. Nearest neighbouring nodes start

connecting and form an alliance. Gradually

connection merges and partitioning continue. This

iterative approach continues until the required

number of partitions are created.

Algorithm: Agglomerative Clustering

1. Begin with the disjoint clusters having level 0 and

sequence number 0.

2. Find the least distance pair of clusters in the

current clustering.

3. Increment the sequence number.

4. Update the distance matrix by deleting the rows

and columns corresponding to clusters and adding

a row and column corresponding to the newly

formed cluster.

5. If all the data points are in one cluster then stop,

else repeat from step 2.

6. Fit this method with graph RDD and decided

number of partitions. This will return the labels.

International Journal of Advanced Computer Research, Vol 10(48)

121

7. Use the labels to partition and color the graph

nodes.

8. Output the Partitioned graph.

3.3Custom dynamic partitioning

Though the result yielded is quite accurate in case of

existing partitioning techniques, they are suitable for

only certain kinds of graphs. All these algorithms are

dependent majorly on the relationship metric or

distance metric used. More accurate results are

obtained if the distance metric is stronger. For

example, consider the K-Means algorithm, which

uses Euclidian distance as the inbuilt distance metric.

Spectral Clustering uses Eigen values itself.

Agglomerative makes use of squared Euclidian

distance. Thus, writing an appropriate distance metric

would allow building an effective custom partitioning

method. The same principle is used to build this

partitioning method.

The custom partitioning technique is built on the

basis of scipy package. It uses linkage and fcluster

functionalities. First, the custom partitioning function

is written. The following distance metric is used.

Distance_metric=(a-b)*a + (b –a)* b (2)

In this formula a stands for the similarity index and b

stands for the node which is used to find the distance

between the similarity index and given node. If this

distance is lesser then the relation is stronger. This

formula is derived in iterative greedy approach. The

formula is started with a + b and slowly disturbances

are removed. For each combination, the result is

evaluated and the conclusion is derived as equation

(2) gives optimal results. The sum of the distance

metric for the nodes is returned.

Further linkage program is used to partition the data.

This makes use of 3 parameters. The first one is input

data, the second is the method of calculation and the

third parameter is the name of the custom function

for distance metric. This will generate the partitioned

data which can be stored in a variable.

The partitioned data from the above function is

passed to fcluster function which is responsible for

dividing the graph into the mentioned number of

partitions. This function also takes 3 parameters. The

first one is partitioned data returned by linkage

function, second is the number of the clusters to be

formed and the third one is the criterion for

classifying. Maxclust option is used to form the flat

partitions of the graph.

Following is the algorithm for Custom dynamic

partition:

Algorithm: Custom Dynamic Partitioning of graphs

1. Input the Graph RDD.

2.Initially, each node is considered as a single

partition.

3.Compute the distance between a node and index

using the custom distance formula:

 Distance= (a - b) * a + (b –a) * b

4. Store nodes with least distance to particular index

into one partition.

5.Repeat steps 3 and 4 until all items are grouped into

a given number of partitions.

6.Fit this method with graph RDD and decided

number of partitions. This will return the labels.

7.Use the labels to partition and color the graph

nodes.

8. Output the partitioned graph.

4. Result
This section describes the results of the partitioning

algorithms. In this project, all the four algorithms are

executed for Twitter data set with different amounts

of data. First, the tests are run for the Twitter account

of Tim O’Reilly with 1.8 million followers. Data set

boils down to 500 nodes after processing for depth 4.

The next set of data is executed for the Twitter

account of Narendra Modi with 47.6 million

followers. Data processing selects 1067 nodes for a

depth of 6.

4.1Results of the algorithms for the graph with

500 nodes

Figure 3 represents the input graph with 500 nodes.

Algorithms are executed for this input graph. This

graph does not have any partitions. Hence all the

nodes are represented by blue color.

Based on the similarity index, it is inferred that in this

dataset there are 2 partitions. Further, after the

application of algorithms graph is divided into 2

partitions. Partitions are recognized by violet and

yellow color. This signifies that nodes assigned with

a particular color have more similarity among them.

In this case, those nodes represent Twitter followers

with maximum interaction between each other. Thus,

the degree to which most similar nodes are put

together in one partition, decides the accuracy of the

algorithm. Also, this increases the performance of the

system as logically related nodes are together.

Geetha J et al.

122

Figure 3 Input graph with 500 nodes

4.1.1K-means clustering

Figure 4 shows the output of the K-Means Clustering

algorithm for 500 nodes. K-Means Clustering is done

based on Euclidian distance. The nodes having the

least Euclidian distance to the centroid are grouped in

one partition. This algorithm divides the data in such

a way that 419 nodes are put in one partition

(represented by violet) which are close to one

centroid. Remaining 81 nodes are placed in the

second partition (represented by yellow) which have

the least Euclidian distance to the second centroid.

This indicates 419 nodes in violet partition interact

more with each other. This result is considered most

accurate as K-Means clustering is the standard

algorithm used for the partitioning of data. This also

gives consistent high performance with pretty good

speed and accuracy. The speed and accuracy are

because of the exhaustive grouping of nodes with the

standard distance metric (Euclidian distance). Further

comparison between the existing algorithms is made

by keeping K-Means Clustering as standard. If the

other algorithms classify the same 419 nodes in the

violet partition and 81 nodes in the yellow partition,

then those algorithms are considered 100% accurate.

Figure 4 K-means clustering output for 500 nodes

4.1.2Spectral clustering

Figure 5 displays the output of Spectral Clustering

for 500 nodes. This is the fastest algorithm when

compared to other algorithms. This is because

Spectral clustering uses Eigen value as the distance

metric which is already calculated during the earlier

stages. For executing the 500 nodes dataset it takes

7.03 seconds. It gives 100% accurate results as this

also classifies the same 419 nodes in the violet

partition which have the least Eigen value difference

to the first index and 81 nodes in the yellow partition

which have the least Eigen value difference to the

second index. However, accuracy is unstable as the

data grows in size.

Figure 5 Spectral clustering output for 500 nodes

4.1.3Agglomerative clustering

Figure 6 displays the output of Agglomerative

Clustering when executed for 500 nodes. This

algorithm is slower compared to others. As the

algorithm follows the bottom-up hierarchical method

and elaborately groups node by node, execution time

is affected. However, this detailed grouping increases

the accuracy. It takes around 7.76 seconds to execute

500 nodes. As this algorithm is based on squared

Euclidian distance, nodes having the least squared

Euclidian distance to the first index are put in one

partition (represented by violet color) and remaining

in the second partition (represented by yellow color).

The accuracy of this algorithm is 98% as it classifies

414 nodes in the violet partition and 86 nodes in the

yellow partition.

Figure 6 Agglomerative clustering output for 500

nodes

4.1.4Custom dynamic partitioning

Figure 7 displays the output of the custom

partitioning method for 500 nodes. Considering other

algorithms, custom developed partitioning method is

stable. It takes 7.72 seconds to execute which is

nearly equal to the execution time of other

algorithms. However, accuracy is better than other

algorithms and stable with respect to the size of the

International Journal of Advanced Computer Research, Vol 10(48)

123

data. This algorithm classifies the data based on the

custom distance metric. Hence the nodes having the

least distance metric value to the first index are stored

in the violet partition and remaining in the yellow

partition. This algorithm gives 99.8 % accuracy as it

classifies 417 nodes in the violet partition and 83

nodes in the yellow partition.

Figure 7 Custom dynamic partitioning output for 500

nodes

4.2Results of the algorithms for the graph with

1067 nodes
Figure 8 represents the input graph with 1067 nodes.

Algorithms are executed for this graph. This graph

does not have any partitions. Hence all the nodes have

blue color.

Based on the similarity index, it is inferred that in this

dataset there are 3 partitions. Partitions are recognized

by violet, yellow and blue color. Thus all the nodes

which have maximum interaction with each other

goes inside a particular color partition. As the nodes

which frequently interact with each other are together,

the performance of the application using this

partitioned data increases, eliminating the

communication latency.

Figure 8 Input graph with 1067 nodes

4.2.1K-means clustering

Figure 9 represents the output of the K-Means

Clustering algorithm for 1067 nodes. K-Means being

the standard, it gives good result in case of increased

data size. For the increase in data size to double,

there is only an increase of 0.54 seconds. It partitions

data into 3 groups with 100% accuracy as it is the

standard algorithm. It partitions in such a way that

993 nodes are in the violet partition which has the

least Euclidian distance to the first centroid, 55 nodes

are in the yellow partition with the least distance to

the second centroid and 19 nodes are in the blue

partition which has the least distance to the third

index. Any algorithm that partitions data in the same

way is considered 100% accurate.

Figure 9 K-Means clustering output for 1067 nodes

4.2.2Spectral clustering

Figure 10 displays the output of Spectral Clustering

when executed for 1067 nodes. This algorithm shows

less accuracy in the case of 1067 nodes. Accuracy

drops to 89% as it puts 914 nodes in the violet

partition which has the least Eigen value difference to

the first index. 55 nodes which has the least Eigen

value difference with the second index are stored in

the yellow partition. Remaining 98 nodes are saved in

the blue partition. This shows the inconsistency of

this method in the case of growing data. Still, it is the

fastest with a runtime of 8.03 seconds.

Figure 10 Spectral clustering output for 1067 nodes

4.2.3Agglomerative clustering

Figure 11 represents the output of Agglomerative

Clustering when executed for 1067 nodes.

Agglomerative Clustering shows an increase in

accuracy when data size grows. It gives 99.06%

accuracy as it divides 1003 nodes in the violet

partition which has the least squared Euclidian

distance with the first index, 45 nodes in the yellow

partition having the least squared Euclidian distance

with the second index and remaining 19 nodes in the

Geetha J et al.

124

blue partition. Though the execution time (8.51

seconds) is high, it pays off with better accuracy.

This is because of the hierarchical approach that it

follows.

Figure 11 Agglomerative clustering output for 1067

nodes

4.2.4Custom dynamic partitioning

Figure 12 displays the output of custom dynamic

partitioning for 1067 nodes. Newly implemented

custom dynamic partitioning technique maintains

both speed and accuracy when the data grows in size.

Additionally, accuracy is high and consistent. It takes

of 8.32 seconds execution time which is nearly equal

to other algorithms. It gives an accuracy of 99.81.

This accuracy is because of the custom distance

metric used. Accuracy is 99.81% because it classifies

991 nodes in the violet partition which have the least

custom distance value with the first index, 57 nodes

in the yellow partition with the least custom distance

value to the second index and remaining 19 nodes in

the blue partition. This classification is almost same

as the output of standard K-Means clustering.

Figure 12 Custom dynamic partitioning output for

1067 nodes

5. Performance comparison
The performance of the system is measured based on

2 parameters. First is based on the execution time of

the algorithm. Second is the accuracy of the

algorithms with respect to first.

5.1Analysis based on the execution time

The result of the execution time analysis is as shown

in Table 1. The execution time of the algorithm can

be obtained by using magic function available in

python. This function needs to be specified at the top

of the cell or block. On the execution of the cell, time

taken by the cell to run is displayed as wall time.

Execution time is measured for each algorithm.

Table 1 Analysis based on the execution time of the techniques

Partitioning technique 500 nodes (in Seconds) 1067 nodes(in Seconds)

K-Means Clustering 7.81 8.35

Spectral Clustering 7.3 8.03

Agglomerative Clustering 7.76 8.54

Custom Partitioning 7.78 8.32

Figure 13 Execution time analysis for 500 nodes

International Journal of Advanced Computer Research, Vol 10(48)

125

As displayed in Figure 13 existing algorithms takes

around 7 seconds to run the data for 500 nodes.

Among the existing algorithms, Spectral Clustering is

the fastest with only 7.3 seconds. However, the

custom dynamic partition takes 7.78 seconds which is

nearly equal to the execution time of other

algorithms.

Figure 14 explains the execution time analysis for

1067 nodes. As the data size increases, there is an

increase in the running time. However, in this case,

though the data size is double from 500 nodes to

1000 nodes, the increase in the running time of

algorithms is not much higher. The algorithms take

around 8 seconds to execute. Still the Spectral

Clustering is fastest with 8.03 seconds, while custom

dynamic partitioning takes 8.32 seconds which is

better than other 2 algorithms (K-Means Clustering

and Agglomerative Clustering). Thus, the custom

partitioning technique maintains consistency with the

execution time.

Figure 14 Execution time analysis for 1067 nodes

5.2Analysis based on the accuracy of the

techniques

Accuracy is measured based on the number of nodes

classified. In this project, accuracy is measured with

respect to K-Means algorithm’s results. This is

because K-Means Clustering is the most widely used

and accurate partitioning algorithm. K-Means

classifies 419 nodes in one partition and 81 in

remaining. If the other algorithm classifies same

number of nodes in the given partition, then that

algorithms accuracy is considered 100%. This is

measured using the accuracy_score function in the

sklearn module. This function takes two values. First

one is the prediction value (or benchmark algorithms

partitioning) and the second is the current partitioning

result. The results obtained are printed in percentage.

From this, the percentage of accuracy is obtained.

Table 2 gives the accuracy value of algorithms for

500 and 1067 nodes. AS K-Means Clustering is

considered as the standard, its accuracy is always

100%. Based on the number of the nodes classified

by the other algorithms respective accuracy is

computed. For example, Spectral Clustering classifies

419 nodes in one partition and 81 nodes in other. As

this is same as the K-Means Clustering, accuracy is

considered 100%. But Agglomerative Clustering

classifies 414 in one partition and 86 in other. So, its

accuracy is 98%. In the same way accuracy is

measured for all the algorithms.

As shown in Figure 15 Spectral Clustering gives

100% accuracy in the case of 500 nodes. This shows

that the distance metric used (Eigen values) gives

absolute accuracy in case of a small amount of the

data. In the same way, Agglomerative Clustering

gives 98%. However, custom dynamic partition gives

99.8% of accuracy in this case, which is pretty good

when compared to other algorithms for 500 nodes.

The following chart shows the accuracy comparison

in the case of 500 nodes. Figure 16 explains the

accuracy analysis for 1067 nodes. Accuracy of

Spectral Clustering goes down to 89% when running

for 1067 nodes. Thus, for a large number of nodes,

Spectral Clustering gives lower accuracy.

Agglomerative Clustering displays 99.06% accuracy.

There is a little improvement in the case of

Agglomerative Clustering. However, these

algorithms’ accuracy is not consistent with the size of

the data. Custom partitioning gives the same amount

(99.81%) accuracy even when the data size is

increased. Thus, custom partitioning method gives

both better and consistent results.

Geetha J et al.

126

Table 2 Execution time analysis

Partitioning Technique 500 nodes (in Percentage) 1067 nodes (in Percentage)

K-Means Clustering 100 (Benchmark) 100(Benchmark)

Spectral Clustering 100 89.03

Agglomerative Clustering 98 99.06

Custom Partitioning 99.8 99.81

Figure 15 Accuracy analysis for 500 nodes

Figure 16 Accuracy analysis for 1067 nodes

6. Conclusion and future work
Graph partitioning is one of the highly discussed

research topics in the Big Data environment. Tools

like Apache Spark are providing a stable platform for

carrying out experiments on the same. There are

several existing graph partitioning methods already

available in Spark. Each of these algorithms exhibits

both strength and weakness in certain measures.

Hence there was a need to develop a custom

algorithm to incorporate the strengths of these

existing algorithms and eliminate the weakness.

In this project, various graph partition methods in

Apache Spark are explored. Various existing

algorithms like K-Means Clustering, Spectral

Clustering and Agglomerative Clustering are

implemented. Based on the study of these algorithms,

a new custom dynamic partitioning method is

developed. The capacity to dynamically decide the

optimal number of partitions is integrated into the

application. The new method uses an external custom

distance metric and does the partition based on those

values. All the algorithms are executed on the same

datasets. The size of the data is varied and the results

are accumulated.

Detailed performance analysis is conducted on all the

algorithms based on the gathered results. Execution

time of the custom algorithms is almost same as other

methods, even better in some cases. However, when

it comes to accuracy, the custom partitioning

algorithm provides better results in all the cases.

International Journal of Advanced Computer Research, Vol 10(48)

127

Also, the custom partitioning technique displays

consistency in accuracy with all the volume of the

data compared to existing algorithms. As future

work, we need to enhance the custom dynamic

partitioning technique to take less time for execution.

Also, there is a need to do an exhaustive research on

the integration of real-time graph partitioning with

Artificial Intelligence techniques.

1. The performance of this code has to be tuned to

process more data in unit time.

2. There is a need to do an exhaustive research on the

integration of real-time graph partitioning with

artificial intelligence techniques.

Acknowledgment
None.

Conflicts of interest
The authors have no conflicts of interest to declare.

References
[1] Mokashi VS, Kulkarni DB. A review: scalable parallel

graph partitioning for complex networks. In second

international conference on intelligent computing and

control systems 2018 (pp. 1869-71). IEEE.

[2] Hassan M, Bansal SK. Data partitioning scheme for

efficient distributed RDF querying using apache spark.

In international conference on semantic computing

2019 (pp. 24-31). IEEE.

[3] Gounaris A, Kougka G, Tous R, Montes CT, Torres J.

Dynamic configuration of partitioning in spark

applications. IEEE Transactions on Parallel and

Distributed Systems. 2017; 28(7):1891-904.

[4] Bertolucci M, Carlini E, Dazzi P, Lulli A, Ricci L.

Static and dynamic big data partitioning on apache

spark. In PARCO 2015 (pp. 489-98).

[5] Abughofa T, Zulkernine F. Towards online graph

processing with spark streaming. In international

conference on big data 2017 (pp. 2787-94). IEEE.

[6] Taloba AI, Riad MR, Soliman TH. Developing an

efficient spectral clustering algorithm on large scale

graphs in spark. In international conference on

intelligent computing and information systems 2017

(pp. 292-8). IEEE.

[7] Atashkar AH, Ghadiri N, Joodaki M. Linked data

partitioning for RDF processing on Apache Spark. In

international conference on web research 2017 (pp.

73-7). IEEE.

[8] Tian X, Guo Y, Zhan J, Wang L. Towards memory

and computation efficient graph processing on spark.

In international conference on big data 2017 (pp. 375-

82). IEEE.

[9] Rajan AK, Bhaiya D. Accelerated kerninghan lin

algorithm for graph partitioning. In international

conference on advances in computing,

communications and informatics 2017 (pp. 174-8).

IEEE.

[10] Wang M, Yang W, Li H, Lin Y, Chen J. Metis-CIC: a

new mesh partitioning heuristic for parallel

preconditioned iterative methods in CFD. In

international conference on high performance

computing & simulation 2016 (pp. 188-95). IEEE.

[11] Kyong J, Jeon J, Lim SS. Improving scalability of

apache spark-based scale-up server through docker

container-based partitioning. In proceedings of the

international conference on software and computer

applications 2017 (pp. 176-80).

[12] Olukanmi PO, Twala B. K-means-sharp: modified

centroid update for outlier-robust k-means clustering.

In pattern recognition association of south Africa and

robotics and mechatronics 2017 (pp. 14-9). IEEE.

Dr. Geetha. J. is working as an

Associate Professor in Computer

Science and Engineering Department of

Ramaiah Institute of Technology,

Bangalore. Her areas of interest include

Cloud Computing, Big Data, Semantic

Web, Graph Theory and Web Design.

Email: geetha@msrit.edu

Dr. Jayalakshmi D S is working as an

Associate Professor in Computer

Science and Engineering Department of

Ramaiah Institute of Technology,

Bangalore. Her areas of interest include

Cloud Computing, Big Data and

Computer Graphics.

Email: jayalakshmids@msrit.edu

Harshit. N. G. is a graduate student

currently pursuing M.Tech. in

Computer Science and Engineering in

Ramaiah Institute of Technology,

Bangalore. His area of interest includes

Big Data, Computer Architecture and

Web Technologies.

Email: ngharshit@gmail.com

