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1.Introduction 
In recent years data collection, management and 

usage have grown to an extremely large extent. 

Almost all the major fields like information 

technology, medical science, transport, retail are 

dependent on data analysis for growth. All necessary 

technologies needed for data gathering are getting 

developed exponentially. All the devices from high-

end aeroplanes to household equipment are becoming 

smarter and collecting huge data every second. Now 

the biggest challenge is to analyze this huge data and 

retrieving useful information which will help in the 

major decision-making process.  

 

One of the most discussed problems related to the 

processing of graph data is partitioned. Balanced 

partitioning of the graph is a popularly known NP-

complete problem that has a large set of applications. 
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One of these applications is the solution to a major 

problem in cloud infrastructure i.e., optimal and 

efficient storage of large sets of data which are 

structured as a graph. At the root level, graph 

partitioning is nothing but distributing all the nodes 

in a partition in such a way that maximum of them 

are adjacent (with a maximum number of shared 

edges). Hence the definition of graph partitioning is – 

dividing the graph into a well-defined number of 

partitions, in such a way that excludes partitions have 

a very minimal number of edges. One of its 

variations is the uniform or balanced graph 

partitioning, where it is also a priority to place an 

equal number of nodes in each partitioned 

component. A proper partitioning can be used to 

reduce the cost of communication, load balancing or 

to recognize densely formed clusters [1, 2]. 

 

Apache Spark is the trending technology, which has 

gained immense popularity due to its high-

performance computing in case of big data. In Spark, 

data is stored in persistent data structures called 

Resilient Distributed Datasets (RDDs). These RDDs 
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can be partitioned and stored in different 

computational nodes of the system. The RDDs in 

these nodes are processed in parallel and later the 

results are aggregated. This partitioning of RDDs 

increases the performance and speed of Spark to a 

great extent. There are several inbuilt data 

partitioning techniques already available in Spark. 

These methods are used for data partitioning, the 

same methods can be extended to graph partitioning 

as well. But the problem is that these methods give 

good accuracy with only a certain kind and a certain 

amount of the data. A small variation in the amount 

of data may lead to a large variation in the accuracy 

of these algorithms. Also, these techniques divide the 

data statically into a predefined number of partitions. 

However, if the data are dynamically changing, then 

these algorithms fail to adapt [3, 4]. 

 

In this project along with the implementation of 

existing methods, a new custom dynamic partitioning 

method is developed for the Apache Spark. This 

dynamic technique exploits the relationship between 

the nodes to decide the partition. Closely related 

nodes are placed together. Nodes set with very little 

interaction (number of edges) are separated into 

different partitions. These partitions are placed in 

different RDDs. These individual RDDs are 

processed concurrently in different nodes. This 

parallel data processing increases the efficiency of 

Spark leading to its high-performance computing [5, 

6]. 

 

1.1Problem statement  

In any of the distributed processing systems, 

partitioning determines the degree of parallelism and 

impacts the performance of distributed applications 

to a large extent. The amount of data handled by each 

node should be balanced. Most of the cases, data will 

be divided blindly without any proper logic. This 

further disturbs the load-balance and performance of 

the application. Along with this, partitioning should 

have the capacity to group closely related nodes. 

Also, the partitioning technique should be dynamic to 

intelligently decide the number of partitions in the 

given data [7]. 

 

Existing algorithms in Apache Spark provide good 

performance to only a certain amount of data. 

However, this scale is not uniform as the data grows 

in size. Hence there is a need to develop a custom 

dynamic partitioning method for the Apache Spark 

which is consistent, fault-tolerant and scalable. The 

custom technique should also give stable accuracy 

and speed compared to existing partitioning methods. 

Partitions generated by this algorithm are stored as 

RDDs which further processed at different nodes of 

the system in parallel. This will increase the 

efficiency and speed of data processing in Apache 

Spark. 

 

1.2Objectives 

The objectives are as follows: 

 Implement the existing partitioning methods in 

Apache Spark by extending it to graph data and 

analyze their performance. 

 Implement the custom dynamic partitioning 

method for Apache Spark to overcome the 

problems in existing methods. 

 Custom partitioning should have the capability to 

work on a huge amount of data with consistent 

accuracy and speed. 

 

2.Literature survey 
Balanced partitioning of the graph is a popularly 

known NP-complete problem that has a large set of 

applications. One of these applications is the solution 

to a major problem in cloud infrastructure i.e., 

optimal and efficient storage of large sets of data 

which are structured as a graph. There are several 

ways to partition the data (graphs in this case). 

Commonly used are static partitioning methods. 

However, if the data is continually 

changing/updating, then these algorithms fail to 

adapt. Extensive research has gone on to dynamically 

partition the data into the required number of 

partitions. Dynamic techniques exploit the 

relationship between the nodes to decide the partition 

[7]. Closely related nodes are placed together. Node 

sets with very little interaction (number of edges) are 

separated into different partitions. There are several 

existing graph partitioning techniques. Some of these 

techniques are explained in the following sections. 

 

2.1BFS Partitioning 

Breadth first search (BFS) is a commonly known 

method which can also be used in graph partitioning. 

BFS algorithm traverses the graph breadth-wise 

(level-by-level) and marks each vertex with the level 

in which it was visited. After the complete traversal 

of the input graph, the set of vertices of the graph is 

divided into two partitions V1 and V2 based on a 

predetermined threshold L. Then all the vertices 

falling under level which is less than or equal to L are 

categorized in the set V1. All the remaining vertices 

which are having a level greater than L are placed in 

the set V2. L is chosen in such a way that |V1| is 

always close to |V2|. If there is a need to balance the 

graph, then | V1| should be equal to | V212|. Figure 1 
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shows the working of BFS partitioning. First all the 

nodes will be red representing unpartitioned graph. 

After the first iteration of BFS, nodes falling in the 

lower level of threshold are grouped in V1 represented 

by green color, remaining under V2 as red nodes. In 

the third step partitions are balanced by placing few 

more nodes in V1   which are comparatively close to 

lower threshold [8]. 

 

 
Figure 1 BFS partitioning 

 

2.2Kernighan-Lin algorithm 

The Kernighan-Lin algorithm (also popularly known 

as KL algorithm) is one of the well-known graph 

partitioning algorithms which is takes a heuristic 

approach. Consider simple graph represented as G = 

(V, E, edge-weight function c). In the simplest setting, 

the KL algorithm takes edge-weight function c of all 

edges and creates initial bi-partition (V1, V2) of the set 

V. Further, it produces a new partition (V1
ˊ
, V2

ˊ
) in 

such a way that | V1
ˊ
 | = | V2

ˊ
| = n by rearranging the 

vertices in sets. This re-arranged partition will be 

such that the total cost of the obtained partition is 

lower than the cost of the original partition.  In this 

algorithm cost function is the cut count which is 

number of the nodes from which input node has to 

disconnected to move into new partition. Figure 2 

displays the working of the Kernighan-Lin algorithm. 

First graph is the initial bipartition with nodes D, E, F 

and C one set. After few iteration nodes are 

rearranged and final result has B, C, F and H in one 

partition and remaining in others [9]. 

 

 
Figure 2 Kernighan-lin graph partitioning 

 

2.3METIS 

One of the popular software packages for irregular 

graph partitioning is METIS. METIS is also used for 

partitioning large meshes and also in computing fill-

reducing orderings of sparse matrices. The algorithms 

in this package are based on multi-level graphs 

partitioning. Graph partitioning algorithms which are 

discussed so far computes partition of a graph by 

carrying out operations directly on the original graph. 

These kinds of algorithms are very slow and produce 

partitions which are of poor quality. On the other 

hand, multi-level graph partitioning algorithms 

follow a completely different approach. These 

algorithms; first reduce the size of the graph by 

collapsing vertices and edges, thus obtaining smaller 

graphs. Then algorithm reduce the size and simplify 

it to construct a partition for the actual large graph. 

METIS uses the divide and conquer approach to 

successively reduce the size of the graph. METIS 

utilizes in-built algorithms that make it easier to find 

a high-quality partition. During refinement, METIS 

focuses mainly on the partitions of the graph that is 

really close to the boundary. These well-tuned 

algorithms help METIS package to quickly produce 

high quality partitions for large graphs. 

 

METIS supplies two programs PMetis and KMetis 

for partitioning the graph which is complex and large. 

1. PMetis - based on multilevel recursive bisection 

2. KMetis - based on multilevel k-way partitioning. 

 

Both of these programs are able to produce partitions 

of high quality. However, based on the application, 

one programmer might prefer one over the other. 

Generally, KMetis is preferred when it is necessary to 

partition graphs into more than 8 partitions. In such 

cases, KMetis is notably faster than PMetis. On the 

other hand, PMetis is preferred for partitioning a 

graph into a smaller number of partitions [10]. 

 

2.4JA-BE-JA algorithm 

JA-BE-JA is a distributed algorithmic solution for 

reconciling the balanced k-way problem. In JA-BE-

JA algorithm each node of the graph is practically a 

virtual processing unit, containing the information 

about its neighborhood. Each node of the graph 

acquires knowledge about the group of nodes by 

local interaction. In the beginning, each node selects 

a random partition. Gradually nodes swap their 

partitions with each other to increase the size of the 

group which they belong to. This algorithm aims at 

dealing with large distributed graphs. It makes good 

use of principle of locality. In some cases, it 

outperforms the results achieved by METIS. Given a 

graph which is colored, the idea behind this algorithm 

is to drive the system into a lower energy state by 

applying the local heuristics. All the nodes in execute 

this local heuristic in parallel. Each node tries to 
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swap the color with the neighbour which is having 

the most dominant color, by the following strategy: 

1. Select another node from its neighbours or from a 

random sample 

2. Consider the utility of the color swapping. The two 

nodes swap their colors if it decreases the energy 

else, they keep their colors. Thus, the distribution of 

colors is maintained during the whole process as 

nodes just exchange colors. Therefore, if the color 

uniformly assigned at the start, then final result at the 

end is expected to have balanced partitions [11]. 

 

3. Proposed methodology  
The various graph partitioning methods like BFS 

partitioning, Kernighan-Lin Algorithm, Balanced k-

way partitioning, METIS, and the JA-BE-JA 

algorithms provide the required number of partitions 

and hence play a major role in increasing the 

parallelism. Finally, based on the study of these 

existing algorithms, a new custom partitioning 

method is developed. 

 

3.1Deciding number of partitions on graph RDDs  
The data stored in excel files need to be converted to 

graph format. First, this data is to be converted to 

Spark RDDs. The Jupyter notebook has an in-built 

Spark context. RDDs can be created using Parse 

function available in python. This RDDs have to be 

mapped and remapped to form well-formed RDDs. 

Data is split using split () and map () functions. Once 

RDDs are well formed with nodes and edges, Graph 

RDDs needs to be generated. The layout is specified 

using draw_networkx_nodes function. This function 

has parameters like network graph, node list, node 

color, node size, etc. Based on the user specification 

2D graph will be generated. This graph acts as an 

initial, un-partitioned, input graph showing all nodes 

in a single color. 

 

The graph RDDs generated need to be partitioned. 

Deciding the optimal number of partitions is the core 

functionality of the system. Earlier data-partitioning 

methods statically get the value from the user and 

divide accordingly. This method is pretty straight 

forward in the case of small datasets. However, in the 

case of data set having the range in millions of nodes, 

static methods are of not much use. The function 

described here makes use of mathematical concepts, 

statistical analysis to identify the optimal number of 

groups and display the same. 
3.1.1Finding the laplacian matrix 

Laplacian matrix which is also known as the 

admittance matrix is the graph which represented in a 

matrix format. This is one of the most useful 

properties of the graph. It provides functionalities 

like finding the number of spanning trees, obtaining 

central measure, etc. It is also used in several 

machine learning applications. However, the main 

use of Laplacian matrix is to identify the Eigen value 

and Eigen vectors. 

 

The following is the mathematical formula for 

finding the Laplacian matrix. 

L = D – A     (1) 

 

Where A is the adjacency matrix and D is the degree 

matrix. 
3.1.2Eigen value and eigen vector 

Eigen value and Eigen vectors are the most used 

concepts when it comes to graph theory. They signify 

the most essential properties of the graph. The large 

values yielded by calculation of Eigen values 

signifies which set of nodes are strongly connected. 

Based on these similarity indexes, the number of 

partitions is decided. 

 

Based on the Eigen values a new Spark graph RDD is 

created (RG_mbd) which is used as an input graph to 

the algorithms. These graph RDDs are useful because 

of their fault tolerance nature. In the case of the 

crash, these graph RDDs can be easily recreated 

using linages. This improves the reliability of the 

code. 

Algorithm: Dynamically deciding number of 

partitions 

1.Create RDDs using the dataset stored in excel 

format. 

2.Map the RDDs accordingly by split and lambda 

functions. 

3.Form node and edge list. 

4.Create graph RDDs using node and edge list. 

5.Display the un-partitioned graph. 

6.Convert graph RDDs to matrix format. 

7.Find the Laplacian matrix for input graph RDD. 

8.Compute Eigen values and Eigen vector using the 

Laplacian matrix. 

9.Create a new graph RDD using Eigen values and 

Eigen vector. 

10.Based on Eigen value buckets, decide the number 

of partitions. 

11.Output the number of optimal partitions. 

 

3.2Existing algorithm implementation 

There are several existing graph partitioning methods 

in place. Among them, 3 most important algorithms 

are K-Means Clustering, Spectral Clustering and 

Agglomerative Clustering. 
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3.2.1K-means clustering 

K-Means Clustering is one of the most commonly 

used unsupervised learning techniques that can be 

utilized to resolves the partitioning problem. This 

technique follows a nominal and simple way to 

divide a data collection into a specified number of 

partitions (assume k partitions). The idea is to 

identify K centroids, one for every partition. The 

result mostly depends on the identification of these 

centroids. Changing these centroids may result in 

drastic changes in the final result. Hence it is always 

better to choose them in such a way that they are far 

away from one another. For finding out the 

proximity, Euclidian distance is used. Each point 

belonging to the input data collection is connected to 

its nearest centroid. Hence all the data points near to 

a particular centroid are grouped. When all the data 

points are grouped, the first iteration is over. In the 

next iteration, centroids are recalculated and grouping 

is done again. This process is repeated until there are 

no more changes in the centroid and they have 

converged to a defined number of clusters [12]. The 

algorithm is as follows: 

 

Algorithm: K-Means Clustering 

1.  Import sklearn libraries. 

2.  Initialize K indexes, called centroid, randomly or 

decisively (as per the code needs). 

3. Classify every item to its proximate centroid based 

on the Euclidian distance and update the      

association resulting in groups. 

4.  This step is repeated until the convergence is 

achieved and a given number of clusters are 

formed. 

5.  Fit this method with graph RDD and decided the 

number of partitions. This will return the labels. 

6.  Use the labels to partition and color the graph 

nodes. 

7.  Output the partitioned graph. 

 

If precomputed centroids are provided then steps 2 

and 3 can be circumvented and reduce the 

convergence time to a single iteration [8]. 
3.2.2Spectral clustering 

The biggest problem with the K-Means Clustering is 

that it depends on the selection of centroid. The 

algorithm’s accuracy and convergence depend on the 

metrics used for the selection of centroids. This 

mostly results in local optimal problem. Spectral 

Clustering solves this problem for us. Spectral 

Clustering either uses the Euclidian distance of the 

K-nearest neighbour strategy to form the cluster. In 

this case, Eigen values are used as distance metric 

and indexes are pushed to low dimension space for 

forming partitions. The algorithm is as follows: 

 

Algorithm: Spectral Clustering 

1.  Import sklearn libraries. 

2.  Find out the Eigen values and Eigen vector. Pass it 

down to the algorithm. 

3.  Least Eigen value indicates the most proximity. It  

is used to associate a node with a chosen index. 

4.  This is applied to each data point and the 

partitions are formed. 

5.  Fit this method with graph RDD and number of 

partitions. Labels will be returned. 

6.  Use the labels to partition and color the graph 

nodes. 

7.  Output the partitioned graph. 

 

Precomputed Eigen values, Eigen vector and indexes 

are provided to Spectral Clustering as the inputs. The 

graph is partitioned with a given number of groups 

with nodes belonging to each cluster designated with 

a particular color. 
3.2.3Agglomerative clustering 

Hierarchical clustering is one of the most prominent 

techniques which gives promising results. Groups 

tend to maintain an inherent hierarchy. In hierarchical 

clustering according to the level, splitting or combing 

takes place. There are 2 types of hierarchical 

clustering- Agglomerative and Divisive Clustering. 

In this project, Agglomerative Clustering is used. The 

Agglomerative Clustering is a bottom-up approach 

wherein the Divisive Clustering technique is a top-

down approach. In Agglomerative Clustering, in the 

beginning, each data node is considered as a 

partition. Nearest neighbouring nodes start 

connecting and form an alliance. Gradually 

connection merges and partitioning continue. This 

iterative approach continues until the required 

number of partitions are created. 

 

Algorithm: Agglomerative Clustering 

1.  Begin with the disjoint clusters having level 0 and 

sequence number 0. 

2.  Find the least distance pair of clusters in the 

current clustering. 

3.  Increment the sequence number. 

4.  Update the distance matrix by deleting the rows 

and columns corresponding to clusters and adding 

a row and column corresponding to the newly 

formed cluster. 

5.  If all the data points are in one cluster then stop, 

else repeat from step 2. 

6.  Fit this method with graph RDD and decided 

number of partitions. This will return the labels. 
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7.  Use the labels to partition and color the graph 

nodes. 

8.  Output the Partitioned graph. 

 

3.3Custom dynamic partitioning 

Though the result yielded is quite accurate in case of 

existing partitioning techniques, they are suitable for 

only certain kinds of graphs. All these algorithms are 

dependent majorly on the relationship metric or 

distance metric used. More accurate results are 

obtained if the distance metric is stronger. For 

example, consider the K-Means algorithm, which 

uses Euclidian distance as the inbuilt distance metric. 

Spectral Clustering uses Eigen values itself. 

Agglomerative makes use of squared Euclidian 

distance. Thus, writing an appropriate distance metric 

would allow building an effective custom partitioning 

method. The same principle is used to build this 

partitioning method. 

 

The custom partitioning technique is built on the 

basis of scipy package. It uses linkage and fcluster 

functionalities. First, the custom partitioning function 

is written. The following distance metric is used. 

 

Distance_metric=(a-b)*a + ( b –a )* b (2)  

 

In this formula a stands for the similarity index and b 

stands for the node which is used to find the distance 

between the similarity index and given node. If this 

distance is lesser then the relation is stronger. This 

formula is derived in iterative greedy approach. The 

formula is started with a + b and slowly disturbances 

are removed. For each combination, the result is 

evaluated and the conclusion is derived as equation 

(2) gives optimal results. The sum of the distance 

metric for the nodes is returned. 

 

Further linkage program is used to partition the data. 

This makes use of 3 parameters. The first one is input 

data, the second is the method of calculation and the 

third parameter is the name of the custom function 

for distance metric. This will generate the partitioned 

data which can be stored in a variable.  

 

The partitioned data from the above function is 

passed to fcluster function which is responsible for 

dividing the graph into the mentioned number of 

partitions. This function also takes 3 parameters. The 

first one is partitioned data returned by linkage 

function, second is the number of the clusters to be 

formed and the third one is the criterion for 

classifying. Maxclust option is used to form the flat 

partitions of the graph. 

 

Following is the algorithm for Custom dynamic 

partition: 

 

Algorithm: Custom Dynamic Partitioning of graphs 

1.  Input the Graph RDD. 

2.Initially, each node is considered as a single 

partition. 

3.Compute the distance between a node and index 

using the custom distance formula: 

    Distance= ( a - b ) * a + ( b –a ) * b   

4. Store nodes with least distance to particular index 

into one partition.  

5.Repeat steps 3 and 4 until all items are grouped into 

a given number of partitions. 

6.Fit this method with graph RDD and decided 

number of partitions. This will return the labels. 

7.Use the labels to partition and color the graph 

nodes. 

8. Output the partitioned graph. 

 

4. Result 
This section describes the results of the partitioning 

algorithms. In this project, all the four algorithms are 

executed for Twitter data set with different amounts 

of data. First, the tests are run for the Twitter account 

of Tim O’Reilly with 1.8 million followers. Data set 

boils down to 500 nodes after processing for depth 4. 

The next set of data is executed for the Twitter 

account of Narendra Modi with 47.6 million 

followers. Data processing selects 1067 nodes for a 

depth of 6. 

 

4.1Results of the algorithms for the graph with 

500 nodes 

Figure 3 represents the input graph with 500 nodes. 

Algorithms are executed for this input graph. This 

graph does not have any partitions. Hence all the 

nodes are represented by blue color. 

 

Based on the similarity index, it is inferred that in this 

dataset there are 2 partitions. Further, after the 

application of algorithms graph is divided into 2 

partitions. Partitions are recognized by violet and 

yellow color. This signifies that nodes assigned with 

a particular color have more similarity among them. 

In this case, those nodes represent Twitter followers 

with maximum interaction between each other. Thus, 

the degree to which most similar nodes are put 

together in one partition, decides the accuracy of the 

algorithm. Also, this increases the performance of the 

system as logically related nodes are together. 
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Figure 3 Input graph with 500 nodes 

 
4.1.1K-means clustering 

Figure 4 shows the output of the K-Means Clustering 

algorithm for 500 nodes. K-Means Clustering is done 

based on Euclidian distance. The nodes having the 

least Euclidian distance to the centroid are grouped in 

one partition. This algorithm divides the data in such 

a way that 419 nodes are put in one partition 

(represented by violet) which are close to one 

centroid. Remaining 81 nodes are placed in the 

second partition (represented by yellow) which have 

the least Euclidian distance to the second centroid. 

This indicates 419 nodes in violet partition interact 

more with each other. This result is considered most 

accurate as K-Means clustering is the standard 

algorithm used for the partitioning of data. This also 

gives consistent high performance with pretty good 

speed and accuracy. The speed and accuracy are 

because of the exhaustive grouping of nodes with the 

standard distance metric (Euclidian distance). Further 

comparison between the existing algorithms is made 

by keeping K-Means Clustering as standard. If the 

other algorithms classify the same 419 nodes in the 

violet partition and 81 nodes in the yellow partition, 

then those algorithms are considered 100% accurate. 

 

 
Figure 4 K-means clustering output for 500 nodes 

 
4.1.2Spectral clustering 

Figure 5 displays the output of Spectral Clustering 

for 500 nodes. This is the fastest algorithm when 

compared to other algorithms. This is because 

Spectral clustering uses Eigen value as the distance 

metric which is already calculated during the earlier 

stages. For executing the 500 nodes dataset it takes 

7.03 seconds. It gives 100% accurate results as this 

also classifies the same 419 nodes in the violet 

partition which have the least Eigen value difference 

to the first index and 81 nodes in the yellow partition 

which have the least Eigen value difference to the 

second index. However, accuracy is unstable as the 

data grows in size. 

 

 
Figure 5 Spectral clustering output for 500 nodes 

 
4.1.3Agglomerative clustering 

Figure 6 displays the output of Agglomerative 

Clustering when executed for 500 nodes. This 

algorithm is slower compared to others. As the 

algorithm follows the bottom-up hierarchical method 

and elaborately groups node by node, execution time 

is affected. However, this detailed grouping increases 

the accuracy.  It takes around 7.76 seconds to execute 

500 nodes. As this algorithm is based on squared 

Euclidian distance, nodes having the least squared 

Euclidian distance to the first index are put in one 

partition (represented by violet color) and remaining 

in the second partition (represented by yellow color). 

The accuracy of this algorithm is 98% as it classifies 

414 nodes in the violet partition and 86 nodes in the 

yellow partition. 

 

 
Figure 6 Agglomerative clustering output for 500 

nodes 

 
4.1.4Custom dynamic partitioning 

Figure 7 displays the output of the custom 

partitioning method for 500 nodes. Considering other 

algorithms, custom developed partitioning method is 

stable. It takes 7.72 seconds to execute which is 

nearly equal to the execution time of other 

algorithms. However, accuracy is better than other 

algorithms and stable with respect to the size of the 
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data. This algorithm classifies the data based on the 

custom distance metric. Hence the nodes having the 

least distance metric value to the first index are stored 

in the violet partition and remaining in the yellow 

partition. This algorithm gives 99.8 % accuracy as it 

classifies 417 nodes in the violet partition and 83 

nodes in the yellow partition. 

 

 
Figure 7 Custom dynamic partitioning output for 500 

nodes 

 

4.2Results of the algorithms for the graph with 

1067 nodes 
Figure 8 represents the input graph with 1067 nodes. 

Algorithms are executed for this graph. This graph 

does not have any partitions. Hence all the nodes have 

blue color. 

 

Based on the similarity index, it is inferred that in this 

dataset there are 3 partitions. Partitions are recognized 

by violet, yellow and blue color.  Thus all the nodes 

which have maximum interaction with each other 

goes inside a particular color partition. As the nodes 

which frequently interact with each other are together, 

the performance of the application using this 

partitioned data increases, eliminating the 

communication latency. 

 

 
Figure 8 Input graph with 1067 nodes 

 
4.2.1K-means clustering 

Figure 9 represents the output of the K-Means 

Clustering algorithm for 1067 nodes. K-Means being 

the standard, it gives good result in case of increased 

data size. For the increase in data size to double, 

there is only an increase of 0.54 seconds. It partitions 

data into 3 groups with 100% accuracy as it is the 

standard algorithm. It partitions in such a way that 

993 nodes are in the violet partition which has the 

least Euclidian distance to the first centroid, 55 nodes 

are in the yellow partition with the least distance to 

the second centroid and 19 nodes are in the blue 

partition which has the least distance to the third 

index. Any algorithm that partitions data in the same 

way is considered 100% accurate. 

 

 
Figure 9 K-Means clustering output for 1067 nodes 

 
4.2.2Spectral clustering 

Figure 10 displays the output of Spectral Clustering 

when executed for 1067 nodes. This algorithm shows 

less accuracy in the case of 1067 nodes. Accuracy 

drops to 89% as it puts 914 nodes in the violet 

partition which has the least Eigen value difference to 

the first index. 55 nodes which has the least Eigen 

value difference with the second index are stored in 

the yellow partition. Remaining 98 nodes are saved in 

the blue partition. This shows the inconsistency of 

this method in the case of growing data. Still, it is the 

fastest with a runtime of 8.03 seconds. 

 

 
Figure 10 Spectral clustering output for 1067 nodes 

 
4.2.3Agglomerative clustering 

Figure 11 represents the output of Agglomerative 

Clustering when executed for 1067 nodes. 

Agglomerative Clustering shows an increase in 

accuracy when data size grows. It gives 99.06% 

accuracy as it divides 1003 nodes in the violet 

partition which has the least squared Euclidian 

distance with the first index, 45 nodes in the yellow 

partition having the least squared Euclidian distance 

with the second index and remaining 19 nodes in the 
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blue partition. Though the execution time (8.51 

seconds) is high, it pays off with better accuracy. 

This is because of the hierarchical approach that it 

follows. 

 
Figure 11 Agglomerative clustering output for 1067 

nodes 

 
4.2.4Custom dynamic partitioning 

Figure 12 displays the output of custom dynamic 

partitioning for 1067 nodes. Newly implemented 

custom dynamic partitioning technique maintains 

both speed and accuracy when the data grows in size. 

Additionally, accuracy is high and consistent. It takes 

of 8.32 seconds execution time which is nearly equal 

to other algorithms. It gives an accuracy of 99.81. 

This accuracy is because of the custom distance 

metric used. Accuracy is 99.81% because it classifies 

991 nodes in the violet partition which have the least 

custom distance value with the first index, 57 nodes 

in the yellow partition with the least custom distance 

value to the second index and remaining 19 nodes in 

the blue partition. This classification is almost same 

as the output of standard K-Means clustering. 

 

 
Figure 12 Custom dynamic partitioning output for 

1067 nodes 

 

5. Performance comparison 
The performance of the system is measured based on 

2 parameters. First is based on the execution time of 

the algorithm. Second is the accuracy of the 

algorithms with respect to first. 

 

5.1Analysis based on the execution time 

The result of the execution time analysis is as shown 

in Table 1. The execution time of the algorithm can 

be obtained by using magic function available in 

python. This function needs to be specified at the top 

of the cell or block. On the execution of the cell, time 

taken by the cell to run is displayed as wall time. 

Execution time is measured for each algorithm. 

 

 

 

 

Table 1 Analysis based on the execution time of the techniques 

Partitioning technique 500 nodes (in Seconds) 1067 nodes(in Seconds) 

K-Means Clustering 7.81 8.35 

Spectral Clustering 7.3 8.03 

Agglomerative Clustering 7.76 8.54 

Custom Partitioning 7.78 8.32 

 

 
Figure 13 Execution time analysis for 500 nodes 
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As displayed in Figure 13 existing algorithms takes 

around 7 seconds to run the data for 500 nodes. 

Among the existing algorithms, Spectral Clustering is 

the fastest with only 7.3 seconds. However, the 

custom dynamic partition takes 7.78 seconds which is 

nearly equal to the execution time of other 

algorithms. 

 

Figure 14 explains the execution time analysis for 

1067 nodes. As the data size increases, there is an 

increase in the running time. However, in this case, 

though the data size is double from 500 nodes to 

1000 nodes, the increase in the running time of 

algorithms is not much higher. The algorithms take 

around 8 seconds to execute. Still the Spectral 

Clustering is fastest with 8.03 seconds, while custom 

dynamic partitioning takes 8.32 seconds which is 

better than other 2 algorithms (K-Means Clustering 

and Agglomerative Clustering). Thus, the custom 

partitioning technique maintains consistency with the 

execution time. 

 

 

 
Figure 14 Execution time analysis for 1067 nodes 

 

5.2Analysis based on the accuracy of the 

techniques 

Accuracy is measured based on the number of nodes 

classified. In this project, accuracy is measured with 

respect to K-Means algorithm’s results. This is 

because K-Means Clustering is the most widely used 

and accurate partitioning algorithm. K-Means 

classifies 419 nodes in one partition and 81 in 

remaining. If the other algorithm classifies same 

number of nodes in the given partition, then that 

algorithms accuracy is considered 100%. This is 

measured using the accuracy_score function in the 

sklearn module. This function takes two values. First 

one is the prediction value (or benchmark algorithms 

partitioning) and the second is the current partitioning 

result. The results obtained are printed in percentage. 

From this, the percentage of accuracy is obtained. 

 

Table 2 gives the accuracy value of algorithms for 

500 and 1067 nodes. AS K-Means Clustering is 

considered as the standard, its accuracy is always 

100%. Based on the number of the nodes classified 

by the other algorithms respective accuracy is 

computed. For example, Spectral Clustering classifies 

419 nodes in one partition and 81 nodes in other. As 

this is same as the K-Means Clustering, accuracy is 

considered 100%. But Agglomerative Clustering 

classifies 414 in one partition and 86 in other. So, its 

accuracy is 98%. In the same way accuracy is 

measured for all the algorithms. 

   

As shown in Figure 15 Spectral Clustering gives 

100% accuracy in the case of 500 nodes. This shows 

that the distance metric used (Eigen values) gives 

absolute accuracy in case of a small amount of the 

data. In the same way, Agglomerative Clustering 

gives 98%. However, custom dynamic partition gives 

99.8% of accuracy in this case, which is pretty good 

when compared to other algorithms for 500 nodes. 

The following chart shows the accuracy comparison 

in the case of 500 nodes.  Figure 16 explains the 

accuracy analysis for 1067 nodes. Accuracy of 

Spectral Clustering goes down to 89% when running 

for 1067 nodes. Thus, for a large number of nodes, 

Spectral Clustering gives lower accuracy. 

Agglomerative Clustering displays 99.06% accuracy. 

There is a little improvement in the case of 

Agglomerative Clustering. However, these 

algorithms’ accuracy is not consistent with the size of 

the data. Custom partitioning gives the same amount 

(99.81%) accuracy even when the data size is 

increased. Thus, custom partitioning method gives 

both better and consistent results.
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Table 2 Execution time analysis 

Partitioning Technique 500 nodes (in Percentage) 1067 nodes (in Percentage) 

K-Means Clustering 100 (Benchmark) 100(Benchmark) 

Spectral Clustering 100 89.03 

Agglomerative Clustering 98 99.06 

Custom Partitioning 99.8 99.81 

 

 
Figure 15 Accuracy analysis for 500 nodes 

 

 
Figure 16 Accuracy analysis for 1067 nodes 

 

6. Conclusion and future work 
Graph partitioning is one of the highly discussed 

research topics in the Big Data environment. Tools 

like Apache Spark are providing a stable platform for 

carrying out experiments on the same. There are 

several existing graph partitioning methods already 

available in Spark. Each of these algorithms exhibits 

both strength and weakness in certain measures. 

Hence there was a need to develop a custom 

algorithm to incorporate the strengths of these 

existing algorithms and eliminate the weakness. 

 

In this project, various graph partition methods in 

Apache Spark are explored. Various existing 

algorithms like K-Means Clustering, Spectral 

Clustering and Agglomerative Clustering are 

implemented. Based on the study of these algorithms, 

a new custom dynamic partitioning method is 

developed. The capacity to dynamically decide the 

optimal number of partitions is integrated into the 

application. The new method uses an external custom 

distance metric and does the partition based on those 

values. All the algorithms are executed on the same 

datasets. The size of the data is varied and the results 

are accumulated.  

 

Detailed performance analysis is conducted on all the 

algorithms based on the gathered results. Execution 

time of the custom algorithms is almost same as other 

methods, even better in some cases. However, when 

it comes to accuracy, the custom partitioning 

algorithm provides better results in all the cases. 
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Also, the custom partitioning technique displays 

consistency in accuracy with all the volume of the 

data compared to existing algorithms. As future 

work, we need to enhance the custom dynamic 

partitioning technique to take less time for execution. 

Also, there is a need to do an exhaustive research on 

the integration of real-time graph partitioning with 

Artificial Intelligence techniques. 

 

1. The performance of this code has to be tuned to 

process more data in unit time. 

2. There is a need to do an exhaustive research on the 

integration of real-time graph partitioning with 

artificial intelligence techniques. 
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