
International Journal of Advanced Computer Research, Vol 6(23)

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

http://dx.doi.org/10.19101/IJACR.2016.623015

58

Transformation of LOG file using LIPT technique

Amit Kumar Sinha
*
 and Vinay Singh

Usha Martin Academy, Ranchi, India

Received: 15-January-2016; Revised: 23-March-2016; Accepted: 28-March-2016

©2016 ACCENTS

1.Introduction
Now we are living in a data world. Out of hundred

percent data, ninety percent of the data is generated

in the last two years. Millions of terabyte of log files

are generated every day. As far as data organization

is concerned the data are structured, unstructured and

semi structured. The log file is under semi structured

data. A log file is a copy of all the things or action

which occurs in a particular server. Log files are

maintained on the server to keep the information

about the visitor from where they are coming, how

they return, how they navigate through a site.

Through these log files, a system administrator can

determine what Web sites you've accessed, whom

you are sending e-mails to and receiving e-mails

from and what applications are being used. Log files

can be found in the OS, in the Web browser in the

form of a cache, in applications in the form of

backups, E-mails etc. A log file also contains a list of

events, which have been "logged" by a computer.

Log files are often generated during software

installation and are created by Web servers, but they

can be used for many other purposes as well. The log

files stores and keep track of all information about

the visitor in each visit. In plain text format log files

are saved.

*Author for correspondence

The website visitor data are recorded in web-server in

the form of log files, where each visitor IP address,

visit time and the page visited information are

included. The log file also stores images, JavaScript

or CSS files. Website statistics software is used for

processing data, which can display the information in

a user-friendly format, a user can view more detail

information on a graph representation of each day on

click and also it includes the visitor graph of the last

month. By operating System, FTP programs and

Software Utilities log files may also be generated.

Mac-OS X stores a log of all program and system

crashes; we can view it by using the built-in Console

application. The event Viewer program uses to show

Windows records applications, security, and system

logs.

Most log files have a ".log" file extension, although

numerous make use of the standard ".txt" extension

or a different proprietary extension in its place [1].

Log file information is recorded following the order

in which they occurred, and is located in the root

directory, or rarely in a secondary folder, depending

on how it is set up by the server [2].

Now a days size of computer networks increases, so

it is quite difficult to monitor, control and secure

them. These networks consist of several devices,

sensors and a gateway which are spread over large

geographical areas. Each of these devices produces

Research Article

Abstract
Log files in complex systems quickly grow into huge sizes. Often, they must be kept for a long period of time. For the

convenience and storage economy, log files should be compressed. However, most of the available log file compression

tools use a general-purpose algorithm, which do not take advantage of redundancy specific log files. The objective of this

paper is to use Length Index Preserving Transformation (LIPT) technique to transform the log files and reduces the

significant amount of redundant characters. The applied transformed file in data compression tool will effectively reduce

storage space. It has been observed that LIPT is an effective way to transform log files for size reduction and the file size

get reduced to the average of 44% before the compression. During the process of transformation the redundant character

gets reduced.

Keywords
Compression, LIPT, Reduction, Transformation.

International Journal of Advanced Computer Research, Vol 6(23)

59

log file, which need to be analyzed to monitor and

provide network security. Current information

systems are replete with log file which are created in

multiple places for multiple purpose. Log files may

quickly grow to huge size and they must keep for a

long period of time. Log files are an excellent source

for determining the health status of a System and are

used to capture the events happened within an

organization‟s system and the network. Within an

association, many logs enclose records associated

with computer security. Common examples of these

computer security, logs are audit logs that track user

authentication attempts and security device logs that

record potential attacks [3].

The log file grows quickly and store for a long period

of time, so it needs a large amount of space also. The

main aim of this paper is to transform a log file in a

format to produce better compressible output than the

original data. The transformation can be used in any

kind of textual log file, despite of their source and

size. The present paper uses a specialized log file

transformation scheme Length index preserving

transformation (LIPT) technique to transformed logs

file. The rest of the paper is organized as follows:

section 2 is the survey of related works, section 3

discusses the LIPT method, results and discussion is

presented in section 4 while, the conclusion is given

in section 5.

2.Related work
Rácz and Lukács [4] presented DSLC, a generalized

scheme for web log compression. The DSLC is

claimed to improve general purpose compression

algorithm efficiency on the web log up to a factor of

ten, it works well only on huge log file (over 1 GB)

and it requires human assistance before the

compression, it takes an average of two weeks for a

specific log file.

Balakrishnan and Sahoo [5] proposed a scheme for

compression of system logs of IBM Blue Gene/L

supercomputer. The scheme consists of preprocessing

stage and general purpose compression. The measure

improvement of compression ratio was 28.3 % .

Skibinski and Swacha [6] proposed a couple of

simple preprocessing variants intended to facilitate

further compression of log files from various

applications. They proposed five variants, where the

simplest one merely encodes each line with reference

to the previous line, storing the length of the longest

match on a single byte (with the aid of symbols over

127 in ASCII), followed by the mismatching

subsequence copied verbatim, until the nearest field

end, where again the longest match in the previous

line for the corresponding field is sought for. The

next two variables are supplementary flexible in

selecting the reference line which helps particularly

for log types were not every line have matching

structure.

Fourth, variant adds a dictionary substitution of

words found in a pure pass (an idea used earlier, e.g.

in [7], for plain text compression), and the fifth

variant extends the previous one with compact

encoding of the following patterns: numbers, dates,

times and IP addresses. The transformed log files

compressed with the default zip algorithm, in their

experiments, i.e. deflate, where on average shorter by

37% than the non-preprocessed files submitted to zip.

Major enhancement has also been pointed when

stronger back-end compression algorithms (LZMA,

PPMVC) were used [7]. They had proposed a

specialized lossless Apache web log preprocessor and

test it with the combination of several popular

general purpose compressors. The result shows the

proposed transform improves the compression

efficiency of general purpose compressor on average

by 65% in case of gzip and 52% in case of bzip2[7].

Feng et al. [8] suggested that the results of standard

statistical tests performed on log-transformed data are

often not relevant. Fegreei and Ahmad [9]

experiment reveal a significant improvement in terms

of the execution time of the log file‟s frequency

mining calculation.Novel kinds of data, like XML,

spatial, biomedical, or multimedia data should

efficiency handle by Extraction, Transformation and

Loading (ETL) applications [10].

3.Length index preserving transformation
Length Index Preserving Transform (LIPT) has been

published by Awan and Mukherjee [11]. LIPT is a

reversible lossless data transform which is an

extension over LPT, RLPT and SCLPT, group of

transforms which are in turn extensions of the Star-

Encoding. It uses certain approaches proposed in

LPT, and still yields better compression and time

performance than any of that. It introduces frequent

occurrence of common characters as well as it

reduces the original text. The Reverse Length-

Preserving Transform shortening the length of

encoded words required to perform the one to one

mapping with the original words. With LIPT, concept

of sub-dictionaries and building dictionaries

implement, here also, the dictionary should be pre-

decided and it must be available to the compressor

Amit Kumar Sinha et al.

60

and de-compressor. In LIPT, the codeword is made

up of three components <*, LengthChar, OffSet>

[12].

Example

The dictionary consisting of various sub-dictionaries

considering the only words given in the following

text data will be as shown in Table 1.

Table 1 Mapping of words

INDEX D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

1 meta measure learning education Information

2 four average training abilities Improvement

3 Decoding

4

5

Improvement, Education, learning, information,

meta, abilities, visible, four, training, improvement,

Decoding char length of meta, seed is 4 so assign in

D4, character length of measure is 7 so assign in D7,

likewise char length of average is 7 so assign 2nd

column of D7 all other words are assigned. Char

length of information and improvement is 11 so

assign to D11 -1st column (information occurs first)

and 2nd column (improvement occurs second). In

the above Table 1 number of rows can be increased

so that word dictionary can be increased.

3.1Map the words in dictionary

Let Di[j] denote the word in dictionary i at index j.

Let (
*
w) denote the codeword of word w. So,

*(Di[j]) denotes the codeword for word at index j in

dictionary i. The length of each codeword used for

words in dictionary Di is i.

The 52 words are assigned codeword represented by

a sequence of characters followed by a single

alphabet letter from {a, b, …, z, A, B, ..., Z} as

follows: at index j (1 ≤i ≤26): 1st letter is i
th

 a lower

case letter of the English alphabet, remaining next 26

codeword for words at index j (27 ≤i ≤52): 1st letter

is i
th

 upper case letter of the English alphabet. Next

52 words are assigned codeword as above; with a

difference that 2nd letter is used from English

alphabet for words at index 53 to 104. The concept is

similar, except that the single alphabet letter (a, b,…,

z, A, B,..., Z) is placed in the sequence in the second

position. The process is repeated till codeword

assigns to all words in all sub-dictionaries.

3.2Transformation process

Consider the notation Di[j] to denote the jth word in

partition Di and EN(Di[j]) to denote the LIPT

encoded word. The codeword EN(Di[j]) is made up

of three components <*, Lengthchar, offset>.

At the start of a word denotes that it is an encoded

word. If a word is not found in the dictionary it is left

unaltered, and thus does not have a prefixed
*
.

 LengthChar denotes the length of the actual word

Di[j]. Note that the length is represented using

characters <a-z> corresponding to length <1-26>.

 Offset represents the index of the actual word in

partial dictionary Di. The index is represented

using letters of the alphabet. Offset of the first

word is “a”, 26th word is “z”, 27th word is “A”,

52nd word “Z”, the 53
rd

 word “aa” and so on.

 Thus, the word information in the given example,

would be encoded as *ka, where * implies that the

word is encoded; k means its length as 11; and a

represents the index 1 in the dictionary D11.

3.3Reverse transformation process

The reverse transformation of the word EN (DI [j]) is

fairly simple. If the word read from the encoded

input file begins with *, it is to be decoded;

otherwise it is sent to output as it is. Decoding is

done as follows:

 Determine length i of word from 2nd character of

codeword (encoded word). This determines sub-

dictionary number.

 Determine index of word in sub-dictionary Di

from offset.

 The resulting word is (Di[j]) for output.

 If there is a capitalization mask at the end of the

encoded word, then it is applied to the decoded

word [12].

For example: -*hc denotes that the encoded code

word (denoted by first character *) and original word

is of length 8 (corresponding to „h‟) located at index

1 (offset „c‟). Hence the actual word is “Decoding”

located at index 3 in dictionary D8. Figure 1 shows

the pictorial view of transforming log file.

International Journal of Advanced Computer Research, Vol 6(23)

61

Figure 1 Pictorial view of transforming log files

3.4Log file transformation

The log files are plain text files in which every line

corresponds to single logged event report. Lines are

separated by end-of-file marks and each event

description consists of at least tokens, separated by

spaces. In many log file neighboring lines are very

similar in both structure and content. Our proposed

transformation technique transforms the tokens very

short (in 3 characters) using LIPT, an algorithm is

also proposed to do the work.

This transformation is an extension of core

transformation (Variant 1) of Prezemyslaw Skibnski

and Jakub Swacha [6].

A1-192.168.0.2/TCP_Miss/connect.client-

channel.google.com

A2-192.168.0.2/TCP_Miss/Connect.client-

loreld.fdfid.com

A1 and A2 are two log files A1 come first, then A2

both files are very similar in content and structure so

we transform it using LIPT transformation.

Table 2 Mapping of A1 and A2

 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W

…

W.

.

W26

1 Com Fdfid client connect TCP_Miss

2 google channel

3 loreld

4

From Table 2 column W1-W26 denotes the words of

length, for small letter <1-26> and W27-W52 for

capital letter. Then a mapping is used to encode all

token of a log file in each dictionary to transform the

original log file. Char length of com is 3 so it is

assigned to W3, char length of connect is 7 so it is

assigned to W7. Char length of Client is 6 so it is

assigned to W6. The char length of google is 6 and

char length loreld is also 6 but the google encounter

2
nd

 and loreld encounter 3
rd

 so they assigned in 2
nd

and 3
rd

 row of W6 of Table2, likewise char length of

channel is 7 and encounter 2
nd

 so it is assigned to 2
nd

row of W7.

IP address placed as it is TCP_Miss assigned at first

row of W8 so it is encoded as *ha, where „*‟ denote

the word is encoded „h‟ denote 8 columns and „a‟

denote first row. Connect is encoded as *ga, client is

encoded as *fa, google *fb.

Amit Kumar Sinha et al.

62

Algorithm

The algorithm of the transformation process is as

follows:

Table 3 Transformation algorithm
Step1: Read original log file from left to right and break it into sub word in a sequence.

Step 2: Mapped the word in Table [according to Map the word in Dictionary [section 3.1]].

Conditions:

a) If the word is a string and it is appended with a numeric value, string with special symbol, then mapped the

 string into LIPT table, according to LIPT Rule 3.1.

b) If the sub-word is an IP address, date, any separate numeric value, and a symbol, then skip mapping, and

continue reading.

Step 3: After mapping, transform the word using Transformation process [Section 3.2] and place it as according to key

value stored in an array, where each transformed string is separated by delimiter.

After transforming A1 and A2 using an algorithm

given in Table 3 the result would

A1- 192.168.0.2;*ha;*ga;*fa;*-ga.;*fb.;*ca

A2- 192.168.0.2;*ha;*fa-;*fc;*ea.;*ca

Illustration of algorithm

The algorithm in Table 3 is illustrated by taking an

Apache Log Samples

L1:-lj1036.inktomisearch.com- -

[07/Mar/2004:17:18:36] "GET /robots.txt HTTP/1.0"

L2:-64.242.88.10 - - [07/Mar/2004:17:21:44 -0800]

"getwiki/bin/attach/tWiki/tablePlugin http/1.1"

L3:-64.242.88.10 - - [07/Mar/2004:17:22:49 -0800]

"GET

/twiki/bin/view/TWiki/ManagingWebs?rev=1.22

HTTP/1.1" 200 9310

The mapping of L1, L2 and L3 is given in Table 3.

Table 4 Mapping of L1, L2 and L3

 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W… W.. W26

1 Co

m

http twiki Ij1036 getwiki tableplugin

2 Mar robots

3 Get attach

4 Txt

5 Bin

6

From Table 4, column W1-W26 denotes the words of

length, for small letter <1-26> and W27-W52 for

capital letter. Then a mapping is used to encode all

token of a log file in each dictionary to transform the

original log file. Char length of Mar is 3 so it is

assigned to W3, char length of getwiki is 7 so it is

assigned to W7. Char length of Ij103n6 is 6 so it is

assigned to W6. The char length of robots is 6 and

char length, attach is also 6 but robots encounter 2
nd

and attach encounter 3
rd

 so they assigned to 2
nd

 and

3
rd

 row of W6 of Table 4, likewise other char of L1

and L2 are also assigned.

Transformation process for L1:

L1:-lj1036.inktomisearch.com - -

[07/Mar/2004:17:18:36] "GET /robots.txt HTTP/1.0"

L1:-*fa;*ma;*ca--[07/mar/2004:17:18:36]

*cc;*fa.;*cd

Here lj1036 is mapped at number six column, which

is denoted by „f‟ and first row of W6 which is denoted

by „a‟. So lj1036 is encoded as *fa. Char length of

Inktomisearch 13 so it will assign to W13 at the first

row and encoded as *ma, likewise other word is

mapped and encode. The log File L2 has transformed

is given below.

L2:-64.242.88.10—

[FD:17:21:44];*ga;*ce;*fc;*ea;*ka

4. Result & discussion
We have taken three different log files 2005 Access,

Apache log and NetAccess as given in Table 5. The

result shows in Table 5 is the original log file in KB.

Second is the transformed Log File by using LIPT.

The third one is the percentage reduces after

transformed. The fourth one is differences of the

original and transformed in KB.

For the experiment access log file, apache server, net

access log file is taken in Kilobytes.

International Journal of Advanced Computer Research, Vol 6(23)

63

Table 5 Transforming results of three log files

Log Files 2005access Apache Log Netaccess Average

original log file in KB 14.899 17.575 31.051 21.175

Size After Using LIPT transformation 8.19445 10.1935 17.07805 11.822

% Reduce between raw & transform 45 42 45 44

Difference 6.70455 7.3815 13.97295 9.353

Here the Table 5 shows the original log file size in KB, which reduces by 42% in size after transforming.

Figure 2 Reduction of log files

It has been observed from Table 4 and Figure 2 that

the LIPT method is better to reduce log file size,

before compression. The Figure 2 show three log

files in MB in three different server Access 2005,

Apache and Netaccess, the size of Access 2005 is 15

MB, size of Apache is 17 MB and the size of

Netaccess is 18 MB. After using transformation

method the size of Access2005 is reduced from 15

MB to 7.4 MB, Apache logs reduces from 17MB to

10 MB and Netaccess reduces 18Mb to 11MB.

5. Conclusion and future scope
In this paper an attempt is to transform the log files

Using LIPT method. It has been observed that LIPT

is an effective way to transform log files for size

reduction. From Table 3 it has been observed that the

file size gets reduced to the average of 44% before

the compression. During the process of

transformation the redundant character gets reduced.

It is suggested that before compression of the log file

if the file is transformed using LIPT technique

significant amount of storage space get saved. We are

currently in the process of transforming the log file

using LIPT technique by our own software tool and

analyze the impact of storage using HDFS

architecture in Hadoop framework. In future we

analyze the impact of storage of log file using HDFS

architecture in Hadoop framework which will more

reduce the size and provide optimal storage.

Acknowledgment
None.

Conflicts of interest
The authors have no conflicts of interest to declare.

0

2

4

6

8

10

12

14

16

18

20

Access Apache Log Netaccess

S
iz

e(
K

B
)

Original log file in MB

Size after using LIPT

transformation

Amit Kumar Sinha et al.

64

References
[1] http://techterms.com/definition/logfile. Accessed 01

October 2015.

[2] Sree PK, Babu IR. FELFCNCA: fast & efficient log

file compression using nonlinear cellular automata

classifier. International Journal on Communications.

2012; 1(1): 7-11.

[3] Singh NK, Tomar DS, Roy BN. An approach to

understand the end user behavior through log analysis.

International Journal of Computer Applications. 2010;

5(11):9-13.

[4] Rácz B, Lukács A. High density compression of log

files. In proceedings of data compression conference

2004 (p. 557). IEEE.

[5] Balakrishnan R, Sahoo RK. Lossless compression for

large scale cluster logs. In parallel and distributed

processing symposium (IPDPS) 2006 (pp. 1-7). IEEE.

[6] Skibiński P, Swacha J. Fast and efficient log file

compression. In proceedings of 11th east-European

conference on advances in databases and information

systems (ADBIS) 2007 (pp. 56-69).

[7] Grabowski S, Deorowicz S. Web log compression.

Automatyka/Akademia Górniczo-Hutnicza im.

Stanisława Staszica w Krakowie. 2007; 11(3):417-24.

[8] Feng C et al. Log-transformation and its implications

for data analysis. Shanghai archives of psychiatry.

2014; 26(2):105-9.

[9] Fageeri SO, Ahmad R. An efficient log file analysis

algorithm using binary-based data structure. Procedia-

Social and Behavioral Sciences. 2014; 129:518-26.

[10] Anitha J, Babu M. ETL work flow for extract

transform loading. International Journal of Computer

Science and Mobile Computing. 2014;3(6):610-7.

[11] Awan FS, Mukherjee A. LIPT: a lossless text

transform to improve compression. In international

conference on information technology: coding and

computing 2001 (pp. 452-60). IEEE.

[12] http://shodhganga.inflibnet.ac.in/bitstream/10603/280

63/7/07_chapter1.pdf. Accessed 30 October 2015.

Amit Kumar Sinha has received his

Master of Computer Application degree

from KIIT, University, Bhubaneswar in

the year 2008, Presently he is working

as an Assistant Professor in UMESL,

Kolkata, India Since 2009.

Email: amitkr2k3@gmail.com

Vinay Singh has received his Master of

Computer Application degree from

IGNOU, New Delhi, India in the year

2003 and Master of Technology in

Computer science and Engineering

from BITs Mesra, Ranchi, India in

2009. He has submitted Ph.D from

BIT‟s Mesra, India. Presently he is

working as an Associate Dean of Information Technology

in UMESL, Kolkata, India since 2008. He is also

empanelled with Wipro Technologies as a corporate trainer.

He has published twelve papers in the International Journal

and Conference. His Research area is Software Metrics and

Quality.

http://shodhganga.inflibnet.ac.in/bitstream/10603/28063/7/07_chapter1.pdf
http://shodhganga.inflibnet.ac.in/bitstream/10603/28063/7/07_chapter1.pdf

