
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-1 Issue-1 September 2011

1

A Novel Class, Object and Inheritance based Coupling Measure (COICM)

to Find Better OOP Paradigm using JAVA

Narendra Pal Singh Rathore
1
, Ravindra Gupta

2

M.Tech Scholar, Dept. of Computer Science, SSSIST SEHORE, India
1

Professor in CSE Department at SSSIST Sehore, India
2

Abstract

The extent of coupling and cohesion in an object-

oriented system has implications for its external

quality. Various static coupling and cohesion

metrics have been proposed and used in past

empirical investigations; however none of these

have taken the run-time properties of a program

into account. As program behavior is a function of

its operational environment as well as the

complexity of the source code, static metrics may

fail to quantify all the underlying dimensions of

coupling and cohesion. In this paper we proposed a

novel Class, Object and Inheritance based Coupling

Measure (COICM) to find better OOP Paradigm

using JAVA. By this approach we find the better

OOP paradigm. Our Algorithm consist of four

phases 1) Authentication 2) Select two Object

Oriented Programming Files 3) Count no of

Classes, Object and Inheritance 4)Based on the

analysis provided in the database we deduce that

which programming approach is better in the

current situation. Our simulation result shows that

it is efficient and applicable on the entire platform.

The metric values of class and inheritance diagrams

have been compared to prove which concept is good

to use and beneficial for developers.

Keywords

OOP, OOA, CBO, Inheritance

1. Introduction

In the process of designing a software system, a

software engineer may use a variety of techniques to

express and improve the design. In an effort to find

some common ground between how a programmer

thinks and how a programmer writes code, we focus

here only on models used to express the design of a

system, either before development or afterwards, as

documentation. We concentrate on two models in

particular, both of which are regarded as de facto

standards: the class diagrams of Unified Modeling

Language (UML) [1], and Entity-Relationship

diagrams [2].

High quality software design, among many other

principles, should obey the principle of low coupling.

Stevens et al., who first introduced coupling in the

context of structured development techniques, define

coupling as “the measure of the strength of

association established by a connection from one

module to another” [3]. Therefore, the stronger the

coupling between modules, i.e., the more inter-related

they are, the more difficult these modules are to

understand, change, and correct and thus the more

complex the resulting software system. Complexity

of source code directly relates to cost and quality.

Many coupling models are presented in the literature

to measure the possible interactions between objects

and to measure design complexity. High coupling

between objects increases complexity and cost. Low

coupling is good for designing object oriented

software. Inheritance introduces more interactions

among classes [4]. This will increase the complexity.

This paper presents a comparison between object

oriented interfaces and inheritance class diagrams.

The primary aim of collecting, producing and

analyzing software metrics is to provide the

capability to predict the future development and

maintenance efforts based on past performance [5].

Software metrics are gathered, analyzed, verified and

validated at many levels. Metrics are of two types.

Traditional metrics are used to measure non object

oriented programming and object oriented metrics are

used to measure object oriented programming.

In this paper we discuss several aspects of cohesion

and coupling on the basis of several aspects. We

consider the example of C++ and java for analyzing

several aspects of Object Oriented Programming

including number of classes and object. We also

categorized inheritance behavior on the basis of C++

and java. We also include polymorphic behavior; on

the basis of the above criterion we analyze which

object oriented programming is good.

The remaining of this paper is organized as follows.

We discuss Metric for Class Cohesion in Section 2. In

Section 3 we discuss about Object Oriented based

coupling. In section 4 we discuss about Recent

Scenario. In section 5 we discuss about the proposed

method. The conclusions and future directions are

given in Section 6. Finally references are given.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-1 Issue-1 September 2011

2

2. Metric for Class Cohesion

To describe the cohesion in term of OO paradigm of

software development, we first need to understand

how the construct of a class stands in OO paradigm.

A class may be inherited from zero or more classes in

case of Multiple Inheritances in C++ and a class may

be derived by zero or more classes. An inherited class

is also referred as base class or super class or parent

class, whereas derived class is also referred as

subclass or child class. Class is composed of its

member. Member stands for member attributes and

methods of a class. Members of a class may have

different access rules, based on the access rules;

members can be public, protected and private. Private

members cannot be accessed directly from the outside

of class; however pointer to private methods or

attributes may cause violation to this rule. Protected

and public members of inherited class become the

part of derived classes and hence such members can

be accessed by derived class. In C++, protected

members of the class can also be accessed by the

friend classes. However, public members of the class

can be accessed by all other classes in the system.

Good software design dictates that types and methods

should have high cohesion and low coupling. High

coupling indicates a design that is difficult to reuse

and maintain because of its many interdependencies

on other types. It is shown in fig 1.

Fig 1 Metric for class cohesion

3. Object Oriented Based Coupling

In OO design, the coupling of a class means the

measurement of the interdependence of class with the

other classes. In a design of reasonable size design

size is ten classes normally classes do not exist in

absolute isolation. By going through any OO source

code of a working system, one can see that nearly all

classes have some kind of relationships with other

classes in the design. These relationships, among the

classes, create pair-wise interdependencies. Such

pair-wise relationships among the classes are the

results of design decisions which are made on the

specifications of the system.

A good design decision may create a good

relationship and a bad design decision may create a

bad relation. Here, by good design decision, we mean

a decision that makes the OO design easy to reuse,

understandable and flexible for modification and

adoption in future. Gurp and Bosch, based on an

industrial case study, have presented five reasons for

software erosion, which revolves around the design

decisions made on different stages. During such

stages designer team of the system decides which

relationship should be used to fulfill the goals

(specifications and constraint) of a particular system.

Based on the goals of the system and the design

skills, a team may design a system that exhibits low

or high coupling among the classes.

One way to count the number of class used in this

strategy , in this measurement we will count the

number of distinct classes with whom a particular

class alpha is creating dependency relation. Only one

evidence for dependency relation would be enough,

caused by any of dependency types to recognize the

dependency between two classes. One or more

dependency evidences from a class alpha to class beta

will increase the counter of this metric by one.

Another approach is to count the total number of

evidences including class and inheritance both. This

measurement will be used to count total number of

evidences for a particular class alpha of „Used classes

by dependency relation‟. All types of dependencies

will be used to count such evidences. Counter for this

measurement will be increased by one with every

found evidence for dependency.

High coupling occurs if a class has many links to

other classes. Low coupling occurs if a class has zero

or few links. Low coupling can be achieved by

having less classes linking to one another. For

example: You made an AS3 RPG Game

using only 1 class (the core engine) that does

everything, having all in one will have zero external

links to other custom class. Therefore, it is the lowest

coupling compare to any OOP (Object Oriented

Programming) also; you do not need to bother about

coupling issues.

High coupling have their disadvantages as well, as it

introduces many linking classes, thus increasing the

complexity of managing the project.

Furthermore, a class with many links to another

class, if 1 class is being taken out, it affects the

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-1 Issue-1 September 2011

3

other class. Fig2 shows the example of High

Coupling pattern.

Fig 2 High Coupling Design Pattern

Having a balance coupling (not too high, not too low)

is the best, as it allows you to gain both world

advantages. The pros of high coupling negate the low

coupling cons. The pros of low coupling negate the

high coupling cons. To get the right balance coupling,

design pattern is introduced. It helps to structure your

code to be more reusable, robust and follows object

oriented ways. Fig 3 shows the balance coupling

pattern.

Fig 3 Balanced Coupling pattern

4. Recent Scenario

In 2010, V. Krishnapriya, et al. [6] proposed about

the measurement to measure coupling between

object (CBO), number of associations between

classes (NASSocC), number of dependencies in

metric (NDepIN) and number of dependencies out

metric (NDepOut) in object oriented programming. A

measurement is done for UML class diagrams and

interface diagrams. The metric values of class and

inheritance diagrams have been compared to prove

which concept is good to use and beneficial for

developers.

In 2010, Simon Allier et al. [7] express existing

definitions of coupling metrics using call graphs. We

then compare the results of four different call graph

construction algorithms with standard tool

implementations of these metrics in an empirical

study. Our results show important variations in

coupling between standard and call graph-based

calculations due to the support of dynamic features.

In 2010, Hongyu Pei Breivold et al. [8] primary

studies for this review were identified based on a pre-

defined search strategy and a multi-step selection

process. Based on their research topics, we have

identified four main categories of themes: software

trends and patterns, evolution process support,

evolvability characteristics addressed in OSS

evolution, and examining OSS at software

architecture level. A comprehensive overview and

synthesis of these categories and related studies is

presented as well.

In 2010, Béla Újházi et al. [9] proposed two novel

conceptual metrics for measuring coupling and

cohesion in software systems. There first metric,

Conceptual Coupling between Object classes

(CCBO), is based on the well-known CBO coupling

metric, while the other metric, Conceptual Lack of

Cohesion on Methods (CLCOM5), is based on the

LCOM5 cohesion metric. One advantage of the

proposed conceptual metrics is that they can be

computed in a simpler way as compared to some of

the structural metrics.

In 2010, U. L. Kulkarni et al.[10] proposed a case

study of applying design measures to assess software

quality. Six Java based open source software systems

are analyzed using CK metrics suite to find out

quality of the system and possible design faults that

will reversely affect different quality parameters such

as reusability, understandability, testability,

maintainability. They also present general guidelines

for interpretation of reusability, understandability,

testability, maintainability in the context of selected

projects.

In 2011, Simon Allier et al. [11] proposed a method

to automatically transform an object-oriented

application in an operational component-oriented

application. They also illustrate this method on a real

Java application which is transformed in an

operational OSGi application.

5. Proposed Method

 In this paper we proposed a novel Class, Object and

Inheritance based Coupling Measure (COICM) to

find better OOP Paradigm using JAVA. By this

approach we find the better OOP paradigm. Our

Algorithm consist of four phases 1) Authentication 2)

Class A Class B Class C

Class D

Class E

Class F

Class A Class B Class C

Design

Pattern

Class D

Class E Class F

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-1 Issue-1 September 2011

4

Select two Object Oriented Programming Files 3)

Count no of Classes, Object and Inheritance 4)Based

on the analysis provided in the database we deduce

that which programming approach is better in the

current situation.

In this section we first introduce our algorithm:

Assumption:

Authid-Authenticate User

UnAuthid-Un authorized user

Prog- Different Object Oriented Program

SR- Standard Result

Countcl- no. of classes[Initially 0]

Countob- no. of Object[Initially 0]

Countin-no. of Inheritance[Initially 0]

Algorithm (COICM)

Step 1: [Check Authentication]

{

Enter the userid and password

If(Authid)

{

Print(“welcome user”);

Go to the COICM Interface

}

Else

Print(“Invalid user”)

}

Step 2: Select(Prog)

{

Select the Source File

If(.cpp)

[Accept the C++ source file]

Else(.java)

[Accept the .java file]

}

Step 3: Compare (prog)

{

If(.cpp)

[Standard Result CPP]

Else(.java)

[Standard Result java]

}

Step 4: if SR (CPP)

{

Countcl++;

Countob++;

Countin++;

Goto FRC++(Countcl,Countob,Countin);

}

Step 5: if SR (java)

{

Countcl++;

Countob++;

Countin++;

Goto FRjava(Countcl,Countob,Countin);

}

Step 6: if FRC++(Countcl,Countob,Countin)

{

Calculate the result based on different parameter like

Generalization,specialization etc.

}

Step 7: if FRjava(Countcl,Countob,Countin)

{

Calculate the result based on different parameter like

Generalization, Specialization etc.

}

We can explore the algorithm in the following way:

Step 1: In this section we check proper authentication

of the user. If the user is authorized then user enters

to the secure zone of COICM Interface. Otherwise

first create a valid user and the enter in the secure

zone.

Step 2: In this section file selection can be done. We

select two object oriented program like C++ and java.

Basis on this we can perform several comparison on

several parameters.

Step 3: In this section comparison is done. For C++

we use standard result CPP and for java we use

standard result java.

Step 4: In this section we count number of classes,

object and Inheritance and based on those values we

deduce the final result.

Step 5: Final Result is deduced according to the

following criterion in the database:

1) Generalization

2) Specialization

3) Association

4) Aggregation

5) Inheritance

6) Polymorphism

Based on the above analysis we can deduce the

standard result of C++ program and the java program.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-1 Issue-1 September 2011

5

Step 6: Our result set is changed according to the

number of classes, object and Inheritance.

Based on the above algorithm we show three screen

shot to show the above mechanism.

Fig 4 shows the window where we can count the

number of classes, object and inheritance. Based on

the parameters we can deduce the final result set. Fig

5 shows the final result based on C++ programs. Fig

6 shows the java result set based on java programs.

Fig 4 CPP Result Set

Fig 5 Final Result with CPP file

Fig 6 Java Result Set

6. Conclusion and Future Direction

We analyze several aspects about cohesion and

coupling. We also analyze several methods. In this

paper we proposed a novel Class, Object and

Inheritance based Coupling Measure (COICM) to

find better OOP Paradigm using JAVA. By this

approach we find the better OOP paradigm. Our

Algorithm consist of four phases 1) Authentication 2)

Select two Object Oriented Programming Files 3)

Count no of Classes, Object and Inheritance 4)Based

on the analysis provided in the database we deduce

that which programming approach is better in the

current situation. Our simulation result shows that it

is efficient and applicable on the entire platform. The

metric values of class and inheritance diagrams have

been compared to prove which concept is good to use

and beneficial for developers.

References

[1] I. Jacobson, G. Booch, and J. E. Rumbaugh. The

unified software development process. Addison-

Wesley, 1999.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-1 Number-1 Issue-1 September 2011

6

[2] Database Management Concepts, “Ashutosh

Kumar Dubey”, S.K Kataria Publication, 2010.

[3] V. Basili, L. Briand, and W. Melo, “A Validation

of Object-Oriented Design Metrics as Quality

Indicators,” IEEE Trans. Software Eng., vol. 22,

no. 10, pp. 751-761, 1996.

[4] Mohsen D. Ghassemi and Ronald R.

Mourant,”Evaluation of Coupling in the Context

of Java Interfaces”, Proceedings OOPSLA 2000.

[5] Christopher L. Brooks, Chrislopher G. Buell, “A

Tool for Automatically Gathering Object-

Oriented Metrics”, IEEE, 1994.

[6] V. Krishnapriya and Dr. K. Ramar, 2010

International Conference on Advances in

Computer Engineering,IEEE.

[7] Simon Allier, St´ephane Vaucher, Bruno Dufour,

and Houari Sahraoui, 2010 Working Conference

on Source Code Analysis and Manipulation,

IEEE.

[8] Hongyu Pei Breivold, Muhammad Aufeef

Chauhan and Muhammad Ali Babar, 2010 Asia

Pacific Software Engineering Conference,IEEE.

[9] Béla Újházi,, Rudolf Ferenc , Denys Poshyvanyk

and Tibor Gyimóthy,” New Conceptual Coupling

and Cohesion Metrics for Object-Oriented

Systems”, 2010 Working Conference on Source

Code Analysis and Manipulation.

[10] U. L. Kulkarni, Y. R. Kalshetty and Vrushali G.

Arde,” Validation of CK metrics for Object

Oriented Design Measurement”, IEEE, 2010.

[11] Simon Allier, Salah Sadou, Houari Sahraoui and

Regis Fleurquin” From Object-Oriented

Applications to ComponentOriented Applications

via Component-Oriented Architecture”, 2011

Ninth Working IEEE/IFIP Conference on

Software Architecture.

